Switch to: References

Add citations

You must login to add citations.
  1. Iterated perfect-set forcing.James E. Baumgartner & Richard Laver - 1979 - Annals of Mathematical Logic 17 (3):271-288.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Grigorieff Forcing on Uncountable Cardinals Does Not Add a Generic of Minimal Degree.Brooke M. Andersen & Marcia J. Groszek - 2009 - Notre Dame Journal of Formal Logic 50 (2):195-200.
    Grigorieff showed that forcing to add a subset of ω using partial functions with suitably chosen domains can add a generic real of minimal degree. We show that forcing with partial functions to add a subset of an uncountable κ without adding a real never adds a generic of minimal degree. This is in contrast to forcing using branching conditions, as shown by Brown and Groszek.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On finite lattices of degrees of constructibility.Zofia Adamowicz - 1977 - Journal of Symbolic Logic 42 (3):349-371.
    Download  
     
    Export citation  
     
    Bookmark  
  • Unbounded families and the cofinality of the infinite symmetric group.James D. Sharp & Simon Thomas - 1995 - Archive for Mathematical Logic 34 (1):33-45.
    In this paper, we study the relationship between the cofinalityc(Sym(ω)) of the infinite symmetric group and the minimal cardinality $$\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{b} $$ of an unbounded familyF of ω ω.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Families of sets related to Rosenthal’s lemma.Damian Sobota - 2019 - Archive for Mathematical Logic 58 (1-2):53-69.
    A family \ is called Rosenthal if for every Boolean algebra \, bounded sequence \ of measures on \, antichain \ in \, and \, there exists \ such that \<\varepsilon \) for every \. Well-known and important Rosenthal’s lemma states that \ is a Rosenthal family. In this paper we provide a necessary condition in terms of antichains in \}\) for a family to be Rosenthal which leads us to a conclusion that no Rosenthal family has cardinality strictly less (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Combinatorics on ideals and axiom a.James D. Sharp - 1994 - Journal of Symbolic Logic 59 (3):997-1000.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Distinguishing types of gaps in.Teruyuki Yorioka - 2003 - Journal of Symbolic Logic 68 (4):1261-1276.
    Supplementing the well known results of Kunen we show that Martin’s Axiom is not sufficient to decide the existence of -gaps when -gaps exist, that is, it is consistent with ZFC that Martin’s Axiom holds and there are -gaps but no -gaps.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rosenthal families, filters, and semifilters.Miroslav Repický - 2021 - Archive for Mathematical Logic 61 (1):131-153.
    We continue the study of Rosenthal families initiated by Damian Sobota. We show that every Rosenthal filter is the intersection of a finite family of ultrafilters that are pairwise incomparable in the Rudin-Keisler partial ordering of ultrafilters. We introduce a property of filters, called an \-filter, properly between a selective filter and a \-filter. We prove that every \-ultrafilter is a Rosenthal family. We prove that it is consistent with ZFC to have uncountably many \-ultrafilters such that any intersection of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Adding dominating reals with ωω bounding posets.Janusz Pawlikowski - 1992 - Journal of Symbolic Logic 57 (2):540 - 547.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Selective covering properties of product spaces.Arnold W. Miller, Boaz Tsaban & Lyubomyr Zdomskyy - 2014 - Annals of Pure and Applied Logic 165 (5):1034-1057.
    We study the preservation of selective covering properties, including classic ones introduced by Menger, Hurewicz, Rothberger, Gerlits and Nagy, and others, under products with some major families of concentrated sets of reals.Our methods include the projection method introduced by the authors in an earlier work, as well as several new methods. Some special consequences of our main results are : Every product of a concentrated space with a Hurewicz S1S1 space satisfies S1S1. On the other hand, assuming the Continuum Hypothesis, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Ideals over ω and cardinal invariants of the continuum.P. Matet & J. Pawlikowski - 1998 - Journal of Symbolic Logic 63 (3):1040-1054.
    Let P be any one of the following combinatorial properties: weak P-pointness, weak (semi-) Q-pointness, weak (semi-)selectivity, ω-closedness. We deal with the following two questions: (1) What is the least cardinal κ such that there exists an ideal with κ many generators that does not have the property P? (2) Can one extend every ideal with the property P to a prime ideal with the property P?
    Download  
     
    Export citation  
     
    Bookmark  
  • Happy families and completely Ramsey sets.Pierre Matet - 1993 - Archive for Mathematical Logic 32 (3):151-171.
    We use games of Kastanas to obtain a new characterization of the classC ℱ of all sets that are completely Ramsey with respect to a given happy family ℱ. We then combine this with ideas of Plewik to give a uniform proof of various results of Ellentuck, Louveau, Mathias and Milliken concerning the extent ofC ℱ. We also study some cardinals that can be associated with the ideal ℐℱ of nowhere ℱ-Ramsey sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Combinatorics and forcing with distributive ideals.Pierre Matet - 1997 - Annals of Pure and Applied Logic 86 (2):137-201.
    We present a version for κ-distributive ideals over a regular infinite cardinal κ of some of the combinatorial results of Mathias on happy families. We also study an associated notion of forcing, which is a generalization of Mathias forcing and of Prikry forcing.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathias and silver forcing parametrized by density.Giorgio Laguzzi, Heike Mildenberger & Brendan Stuber-Rousselle - 2023 - Archive for Mathematical Logic 62 (7):965-990.
    We define and investigate versions of Silver and Mathias forcing with respect to lower and upper density. We focus on properness, Axiom A, chain conditions, preservation of cardinals and adding Cohen reals. We find rough forcings that collapse $$2^\omega $$ 2 ω to $$\omega $$ ω, while others are surprisingly gentle. We also study connections between regularity properties induced by these parametrized forcing notions and the Baire property.
    Download  
     
    Export citation  
     
    Bookmark  
  • Perfect-set forcing for uncountable cardinals.Akihiro Kanamori - 1980 - Annals of Mathematical Logic 19 (1-2):97-114.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Definable E 0 classes at arbitrary projective levels.Vladimir Kanovei & Vassily Lyubetsky - 2018 - Annals of Pure and Applied Logic 169 (9):851-871.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Small $$\mathfrak {u}(\kappa )$$ u ( κ ) at singular $$\kappa $$ κ with compactness at $$\kappa ^{++}$$ κ + +.Radek Honzik & Šárka Stejskalová - 2021 - Archive for Mathematical Logic 61 (1):33-54.
    We show that the tree property, stationary reflection and the failure of approachability at \ are consistent with \= \kappa ^+ < 2^\kappa \), where \ is a singular strong limit cardinal with the countable or uncountable cofinality. As a by-product, we show that if \ is a regular cardinal, then stationary reflection at \ is indestructible under all \-cc forcings.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Lifting Argument for the Generalized Grigorieff Forcing.Radek Honzík & Jonathan Verner - 2016 - Notre Dame Journal of Formal Logic 57 (2):221-231.
    In this short paper, we describe another class of forcing notions which preserve measurability of a large cardinal $\kappa$ from the optimal hypothesis, while adding new unbounded subsets to $\kappa$. In some ways these forcings are closer to the Cohen-type forcings—we show that they are not minimal—but, they share some properties with treelike forcings. We show that they admit fusion-type arguments which allow for a uniform lifting argument.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Combinatorics on ideals and forcing with trees.Marcia J. Groszek - 1987 - Journal of Symbolic Logic 52 (3):582-593.
    Classes of forcings which add a real by forcing with branching conditions are examined, and conditions are found which guarantee that the generic real is of minimal degree over the ground model. An application is made to almost-disjoint coding via a real of minimal degree.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ω*1 as an initial segment of the c-degrees.Marcia Groszek - 1994 - Journal of Symbolic Logic 59 (3):956 - 976.
    By an "inverse iteration" of Sacks forcing over a model of V = L, we produce a model in which the degrees of constructibility of nonconstructible reals have order type ω 1 *.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • P-points in Qmax models.Q. Feng & W. H. Woodin - 2003 - Annals of Pure and Applied Logic 119 (1-3):121-190.
    We show how to get canonical models from in which the nonstationary ideal on ω1 is ω1 dense and there is no P-point.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • P-points In Models.Q. Feng & W. H. Woodin - 2003 - Annals of Pure and Applied Logic 119 (1-3):121-190.
    We show how to get canonical models from in which the nonstationary ideal on ω1 is ω1 dense and there is no P-point.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Preserving levels of projective determinacy by tree forcings.Fabiana Castiblanco & Philipp Schlicht - 2021 - Annals of Pure and Applied Logic 172 (4):102918.
    We prove that various classical tree forcings—for instance Sacks forcing, Mathias forcing, Laver forcing, Miller forcing and Silver forcing—preserve the statement that every real has a sharp and hence analytic determinacy. We then lift this result via methods of inner model theory to obtain level-by-level preservation of projective determinacy (PD). Assuming PD, we further prove that projective generic absoluteness holds and no new equivalence classes are added to thin projective transitive relations by these forcings.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Selective ultrafilters and homogeneity.Andreas Blass - 1988 - Annals of Pure and Applied Logic 38 (3):215-255.
    Download  
     
    Export citation  
     
    Bookmark   20 citations