Switch to: References

Add citations

You must login to add citations.
  1. Sierpiński-Zygmund functions that are Darboux, almost continuous, or have a perfect road.Marek Balcerzak, Krzysztof Ciesielski & Tomasz Natkaniec - 1997 - Archive for Mathematical Logic 37 (1):29-35.
    In this paper we show that if the real line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\Bbb R}$\end{document} is not a union of less than continuum many of its meager subsets then there exists an almost continuous Sierpiński–Zygmund function having a perfect road at each point. We also prove that it is consistent with ZFC that every Darboux function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $f\colon{\Bbb R}\to{\Bbb R}$\end{document} is continuous on some set (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Baumgartnerʼs conjecture and bounded forcing axioms.David Asperó, Sy-David Friedman, Miguel Angel Mota & Marcin Sabok - 2013 - Annals of Pure and Applied Logic 164 (12):1178-1186.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Applications of iterated perfect set forcing.Marcia J. Groszek - 1988 - Annals of Pure and Applied Logic 39 (1):19-53.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The club principle and the distributivity number.Heike Mildenberger - 2011 - Journal of Symbolic Logic 76 (1):34 - 46.
    We give an affirmative answer to Brendle's and Hrušák's question of whether the club principle together with h > N₁ is consistent. We work with a class of axiom A forcings with countable conditions such that q ≥ n p is determined by finitely many elements in the conditions p and q and that all strengthenings of a condition are subsets, and replace many names by actual sets. There are two types of technique: one for tree-like forcings and one for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • No Tukey reduction of Lebesgue null to Silver null sets.Otmar Spinas - 2018 - Journal of Mathematical Logic 18 (2):1850011.
    We prove that consistently the Lebesgue null ideal is not Tukey reducible to the Silver null ideal. This contrasts with the situation for the meager ideal which, by a recent result of the author, Spinas [Silver trees and Cohen reals, Israel J. Math. 211 473–480] is Tukey reducible to the Silver ideal.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Families of sets related to Rosenthal’s lemma.Damian Sobota - 2019 - Archive for Mathematical Logic 58 (1-2):53-69.
    A family \ is called Rosenthal if for every Boolean algebra \, bounded sequence \ of measures on \, antichain \ in \, and \, there exists \ such that \<\varepsilon \) for every \. Well-known and important Rosenthal’s lemma states that \ is a Rosenthal family. In this paper we provide a necessary condition in terms of antichains in \}\) for a family to be Rosenthal which leads us to a conclusion that no Rosenthal family has cardinality strictly less (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Madness in vector spaces.Iian B. Smythe - 2019 - Journal of Symbolic Logic 84 (4):1590-1611.
    We consider maximal almost disjoint families of block subspaces of countable vector spaces, focusing on questions of their size and definability. We prove that the minimum infinite cardinality of such a family cannot be decided in ZFC and that the “spectrum” of cardinalities of mad families of subspaces can be made arbitrarily large, in analogy to results for mad families on ω. We apply the author’s local Ramsey theory for vector spaces [32] to give partial results concerning their definability.
    Download  
     
    Export citation  
     
    Bookmark  
  • More forcing notions imply diamond.Andrzej Rosłanowski & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):299-313.
    We prove that the Sacks forcing collapses the continuum onto ${\frak d}$ , answering the question of Carlson and Laver. Next we prove that if a proper forcing of the size at most continuum collapses $\omega_2$ then it forces $\diamondsuit_{\omega_{1}}$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ramsey Sets, the Ramsey Ideal, and Other Classes Over $\mathbf{R}$.Paul Corazza - 1992 - Journal of Symbolic Logic 57 (4):1441-1468.
    We improve results of Marczewski, Frankiewicz, Brown, and others comparing the $\sigma$-ideals of measure zero, meager, Marczewski measure zero, and completely Ramsey null sets; in particular, we remove CH from the hypothesis of many of Brown's constructions of sets lying in some of these ideals but not in others. We improve upon work of Marczewski by constructing, without CH, a nonmeasurable Marczewski measure zero set lacking the property of Baire. We extend our analysis of $\sigma$-ideals to include the completely Ramsey (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mapping a set of reals onto the reals.Arnold W. Miller - 1983 - Journal of Symbolic Logic 48 (3):575-584.
    In this paper we show that it is consistent with ZFC that for any set of reals of cardinality the continuum, there is a continuous map from that set onto the closed unit interval. In fact, this holds in the iterated perfect set model. We also show that in this model every set of reals which is always of first category has cardinality less than or equal to ω 1.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A small ultrafilter number at smaller cardinals.Dilip Raghavan & Saharon Shelah - 2020 - Archive for Mathematical Logic 59 (3-4):325-334.
    It is proved to be consistent relative to a measurable cardinal that there is a uniform ultrafilter on the real numbers which is generated by fewer than the maximum possible number of sets. It is also shown to be consistent relative to a supercompact cardinal that there is a uniform ultrafilter on \ which is generated by fewer than \ sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The covering number and the uniformity of the ideal ℐf.Noboru Osuga - 2006 - Mathematical Logic Quarterly 52 (4):351-358.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cardinal Invariants and the Collapse of the Continuum by Sacks Forcing.Miroslav Repický - 2008 - Journal of Symbolic Logic 73 (2):711 - 727.
    We study cardinal invariants of systems of meager hereditary families of subsets of ω connected with the collapse of the continuum by Sacks forcing S and we obtain a cardinal invariant yω such that S collapses the continuum to yω and y ≤ yω ≤ b. Applying the Baumgartner-Dordal theorem on preservation of eventually narrow sequences we obtain the consistency of y = yω < b. We define two relations $\leq _{0}^{\ast}$ and $\leq _{1}^{\ast}$ on the set $(^{\omega}\omega)_{{\rm Fin}}$ of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The number of translates of a closed nowhere dense set required to cover a Polish group.Arnold W. Miller & Juris Steprāns - 2006 - Annals of Pure and Applied Logic 140 (1):52-59.
    For a Polish group let be the minimal number of translates of a fixed closed nowhere dense subset of required to cover . For many locally compact this cardinal is known to be consistently larger than which is the smallest cardinality of a covering of the real line by meagre sets. It is shown that for several non-locally compact groups . For example the equality holds for the group of permutations of the integers, the additive group of a separable Banach (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Infinite combinatorics and definability.Arnold W. Miller - 1989 - Annals of Pure and Applied Logic 41 (2):179-203.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Higher Miller forcing may collapse cardinals.Heike Mildenberger & Saharon Shelah - 2021 - Journal of Symbolic Logic 86 (4):1721-1744.
    We show that it is independent whether club $\kappa $ -Miller forcing preserves $\kappa ^{++}$. We show that under $\kappa ^{ \kappa $, club $\kappa $ -Miller forcing collapses $\kappa ^{<\kappa }$ to $\kappa $. Answering a question by Brendle, Brooke-Taylor, Friedman and Montoya, we show that the iteration of ultrafilter $\kappa $ -Miller forcing does not have the Laver property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Creatures on ω 1 and weak diamonds.Heike Mildenberger - 2009 - Journal of Symbolic Logic 74 (1):1-16.
    We specialise Aronszajn trees by an $\omega ^\omega $ -bounding forcing that adds reals. We work with creature forcings on uncountable spaces. As an application of these notions of forcing, we answer a question of Moore, Hrušák and Džamonja whether ◇(b) implies the existence of a Souslin tree in a negative way by showing that "◇∂ and every Aronszajn tree is special" is consistent relative to ZFC.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Happy families and completely Ramsey sets.Pierre Matet - 1993 - Archive for Mathematical Logic 32 (3):151-171.
    We use games of Kastanas to obtain a new characterization of the classC ℱ of all sets that are completely Ramsey with respect to a given happy family ℱ. We then combine this with ideas of Plewik to give a uniform proof of various results of Ellentuck, Louveau, Mathias and Milliken concerning the extent ofC ℱ. We also study some cardinals that can be associated with the ideal ℐℱ of nowhere ℱ-Ramsey sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Set Theory and a Model of the Mind in Psychology.Asger Törnquist & Jens Mammen - 2023 - Review of Symbolic Logic 16 (4):1233-1259.
    We investigate the mathematics of a model of the human mind which has been proposed by the psychologist Jens Mammen. Mathematical realizations of this model consists of what the first author (A.T.) has called Mammen spaces, where a Mammen space is a triple in the Baumgartner–Laver model.Finally, consequences for psychology are discussed.
    Download  
     
    Export citation  
     
    Bookmark  
  • In memoriam: James Earl Baumgartner (1943–2011).J. A. Larson - 2017 - Archive for Mathematical Logic 56 (7):877-909.
    James Earl Baumgartner (March 23, 1943–December 28, 2011) came of age mathematically during the emergence of forcing as a fundamental technique of set theory, and his seminal research changed the way set theory is done. He made fundamental contributions to the development of forcing, to our understanding of uncountable orders, to the partition calculus, and to large cardinals and their ideals. He promulgated the use of logic such as absoluteness and elementary submodels to solve problems in set theory, he applied (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Baire numbers, uncountable Cohen sets and perfect-set forcing.Avner Landver - 1992 - Journal of Symbolic Logic 57 (3):1086-1107.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mad families, forcing and the Suslin Hypothesis.Miloš S. Kurilić - 2005 - Archive for Mathematical Logic 44 (4):499-512.
    Let κ be a regular cardinal and P a partial ordering preserving the regularity of κ. If P is (κ-Baire and) of density κ, then there is a mad family on κ killed in all generic extensions (if and) only if below each p∈P there exists a κ-sized antichain. In this case a mad family on κ is killed (if and) only if there exists an injection from κ onto a dense subset of Ult(P) mapping the elements of onto nowhere (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Independence of Boolean algebras and forcing.Miloš S. Kurilić - 2003 - Annals of Pure and Applied Logic 124 (1-3):179-191.
    If κω is a cardinal, a complete Boolean algebra is called κ-dependent if for each sequence bβ: β<κ of elements of there exists a partition of the unity, P, such that each pP extends bβ or bβ′, for κ-many βκ. The connection of this property with cardinal functions, distributivity laws, forcing and collapsing of cardinals is considered.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Perfect-set forcing for uncountable cardinals.Akihiro Kanamori - 1980 - Annals of Mathematical Logic 19 (1-2):97-114.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Parameterfree Comprehension Does Not Imply Full Comprehension in Second Order Peano Arithmetic.Vladimir Kanovei & Vassily Lyubetsky - forthcoming - Studia Logica:1-16.
    The parameter-free part $$\textbf{PA}_2^*$$ of $$\textbf{PA}_2$$, second order Peano arithmetic, is considered. We make use of a product/iterated Sacks forcing to define an $$\omega $$ -model of $$\textbf{PA}_2^*+ \textbf{CA}(\Sigma ^1_2)$$, in which an example of the full Comprehension schema $$\textbf{CA}$$ fails. Using Cohen’s forcing, we also define an $$\omega $$ -model of $$\textbf{PA}_2^*$$, in which not every set has its complement, and hence the full $$\textbf{CA}$$ fails in a rather elementary way.
    Download  
     
    Export citation  
     
    Bookmark  
  • On non-wellfounded iterations of the perfect set forcing.Vladimir Kanovei - 1999 - Journal of Symbolic Logic 64 (2):551-574.
    We prove that if I is a partially ordered set in a countable transitive model M of ZFC then M can be extended by a generic sequence of reals a i , i ∈ I, such that ℵ M 1 is preserved and every a i is Sacks generic over $\mathfrak{M}[\langle \mathbf{a}_j: j . The structure of the degrees of M-constructibility of reals in the extension is investigated. As applications of the methods involved, we define a cardinal invariant to distinguish (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Laver and set theory.Akihiro Kanamori - 2016 - Archive for Mathematical Logic 55 (1-2):133-164.
    In this commemorative article, the work of Richard Laver is surveyed in its full range and extent.
    Download  
     
    Export citation  
     
    Bookmark  
  • Canonization of Smooth Equivalence Relations on Infinite-Dimensional E0-Large Products.Vladimir Kanovei & Vassily Lyubetsky - 2020 - Notre Dame Journal of Formal Logic 61 (1):117-128.
    We propose a canonization scheme for smooth equivalence relations on Rω modulo restriction to E0-large infinite products. It shows that, given a pair of Borel smooth equivalence relations E, F on Rω, there is an infinite E0-large perfect product P⊆Rω such that either F⊆E on P, or, for some ℓ<ω, the following is true for all x,y∈P: xEy implies x(ℓ)=y(ℓ), and x↾(ω∖{ℓ})=y↾(ω∖{ℓ}) implies xFy.
    Download  
     
    Export citation  
     
    Bookmark  
  • Sacks forcing, Laver forcing, and Martin's axiom.Haim Judah, Arnold W. Miller & Saharon Shelah - 1992 - Archive for Mathematical Logic 31 (3):145-161.
    In this paper we study the question assuming MA+⌝CH does Sacks forcing or Laver forcing collapse cardinals? We show that this question is equivalent to the question of what is the additivity of Marczewski's ideals 0. We give a proof that it is consistent that Sacks forcing collapses cardinals. On the other hand we show that Laver forcing does not collapse cardinals.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Cofinitary groups, almost disjoint and dominating families.Michael Hrusak, Juris Steprans & Yi Zhang - 2001 - Journal of Symbolic Logic 66 (3):1259-1276.
    In this paper we show that it is consistent with ZFC that the cardinality of every maximal cofinitary group of Sym(ω) is strictly greater than the cardinal numbers o and a.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Minimal axiomatic frameworks for definable hyperreals with transfer.Frederik S. Herzberg, Vladimir Kanovei, Mikhail Katz & Vassily Lyubetsky - 2018 - Journal of Symbolic Logic 83 (1):385-391.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Ultrafilters of character ω 1.Klaas Pieter Hart - 1989 - Journal of Symbolic Logic 54 (1):1-15.
    Using side-by-side Sacks forcing, it is shown that it is consistent that 2 ω be large and that there be many types of ultrafilters of character ω 1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Forcing with copies of the Rado and Henson graphs.Osvaldo Guzmán & Stevo Todorcevic - 2023 - Annals of Pure and Applied Logic 174 (8):103286.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ω*1 as an initial segment of the c-degrees.Marcia Groszek - 1994 - Journal of Symbolic Logic 59 (3):956 - 976.
    By an "inverse iteration" of Sacks forcing over a model of V = L, we produce a model in which the degrees of constructibility of nonconstructible reals have order type ω 1 *.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Partition Forcing and Independent Families.Jorge A. Cruz-Chapital, Vera Fischer, Osvaldo Guzmán & Jaroslav Šupina - 2023 - Journal of Symbolic Logic 88 (4):1590-1612.
    We show that Miller partition forcing preserves selective independent families and P-points, which implies the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {u}=\mathfrak {i}<\mathfrak {a}_T=\omega _2$. In addition, we show that Shelah’s poset for destroying the maximality of a given maximal ideal preserves tight mad families and so we establish the consistency of $\mbox {cof}(\mathcal {N})=\mathfrak {a}=\mathfrak {i}=\omega _1<\mathfrak {u}=\mathfrak {a}_T=\omega _2$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Layered Posets and Kunen’s Universal Collapse.Sean Cox - 2019 - Notre Dame Journal of Formal Logic 60 (1):27-60.
    We develop the theory of layered posets and use the notion of layering to prove a new iteration theorem is κ-cc, as long as direct limits are used sufficiently often. This iteration theorem simplifies and generalizes the various chain condition arguments for universal Kunen iterations in the literature on saturated ideals, especially in situations where finite support iterations are not possible. We also provide two applications:1 For any n≥1, a wide variety of <ωn−1-closed, ωn+1-cc posets of size ωn+1 can consistently (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Compactness versus hugeness at successor cardinals.Sean Cox & Monroe Eskew - 2022 - Journal of Mathematical Logic 23 (1).
    If [Formula: see text] is regular and [Formula: see text], then the existence of a weakly presaturated ideal on [Formula: see text] implies [Formula: see text]. This partially answers a question of Foreman and Magidor about the approachability ideal on [Formula: see text]. As a corollary, we show that if there is a presaturated ideal [Formula: see text] on [Formula: see text] such that [Formula: see text] is semiproper, then CH holds. We also show some barriers to getting the tree (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ramsey sets, the Ramsey ideal, and other classes over R.Paul Corazza - 1992 - Journal of Symbolic Logic 57 (4):1441 - 1468.
    We improve results of Marczewski, Frankiewicz, Brown, and others comparing the σ-ideals of measure zero, meager, Marczewski measure zero, and completely Ramsey null sets; in particular, we remove CH from the hypothesis of many of Brown's constructions of sets lying in some of these ideals but not in others. We improve upon work of Marczewski by constructing, without CH, a nonmeasurable Marczewski measure zero set lacking the property of Baire. We extend our analysis of σ-ideals to include the completely Ramsey (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A model with no magic set.Krzysztof Ciesielski & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (4):1467-1490.
    We will prove that there exists a model of ZFC+"c = ω 2 " in which every $M \subseteq \mathbb{R}$ of cardinality less than continuum c is meager, and such that for every $X \subseteq \mathbb{R}$ of cardinality c there exists a continuous function f: R → R with f[X] = [0, 1]. In particular in this model there is no magic set, i.e., a set $M \subseteq \mathbb{R}$ such that the equation f[M] = g[M] implies f = g for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • HL ideals and Sacks indestructible ultrafilters.David Chodounský, Osvaldo Guzmán & Michael Hrušák - 2024 - Annals of Pure and Applied Logic 175 (1):103326.
    Download  
     
    Export citation  
     
    Bookmark  
  • Small Filter forcing.R. Michael Canjar - 1986 - Journal of Symbolic Logic 51 (3):526-546.
    Download  
     
    Export citation  
     
    Bookmark