Switch to: References

Add citations

You must login to add citations.
  1. Non-density in punctual computability.Noam Greenberg, Matthew Harrison-Trainor, Alexander Melnikov & Dan Turetsky - 2021 - Annals of Pure and Applied Logic 172 (9):102985.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Primitive recursive reverse mathematics.Nikolay Bazhenov, Marta Fiori-Carones, Lu Liu & Alexander Melnikov - 2024 - Annals of Pure and Applied Logic 175 (1):103354.
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations of online structure theory.Nikolay Bazhenov, Rod Downey, Iskander Kalimullin & Alexander Melnikov - 2019 - Bulletin of Symbolic Logic 25 (2):141-181.
    The survey contains a detailed discussion of methods and results in the new emerging area of online “punctual” structure theory. We also state several open problems.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Online, computable and punctual structure theory.Matthew Askes & Rod Downey - 2023 - Logic Journal of the IGPL 31 (6):1251-1293.
    Several papers (e.g. [7, 23, 42]) have recently sought to give general frameworks for online structures and algorithms ([4]), and seeking to connect, if only by analogy, online and computable structure theory. These initiatives build on earlier work on online colouring and other combinatorial algorithms by Bean [10], Kierstead, Trotter et al. [48, 54, 57] and others, as we discuss below. In this paper we will look at such frameworks and illustrate them with examples from the first author’s MSc Thesis (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Polynomial-time abelian groups.Douglas Cenzer & Jeffrey Remmel - 1992 - Annals of Pure and Applied Logic 56 (1-3):313-363.
    This paper is a continuation of the authors' work , where the main problem considered was whether a given recursive structure is recursively isomorphic to a polynomial-time structure. In that paper, a recursive Abelian group was constructed which is not recursively isomorphic to any polynomial-time Abelian group. We now show that if every element of a recursive Abelian group has finite order, then the group is recursively isomorphic to a polynomial-time group. Furthermore, if the orders are bounded, then the group (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Polynomial-time versus recursive models.Douglas Cenzer & Jeffrey Remmel - 1991 - Annals of Pure and Applied Logic 54 (1):17-58.
    The central problem considered in this paper is whether a given recursive structure is recursively isomorphic to a polynomial-time structure. Positive results are obtained for all relational structures, for all Boolean algebras and for the natural numbers with addition, multiplication and the unary function 2x. Counterexamples are constructed for recursive structures with one unary function and for Abelian groups and also for relational structures when the universe of the structure is fixed. Results are also given which distinguish primitive recursive structures, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Space complexity of Abelian groups.Douglas Cenzer, Rodney G. Downey, Jeffrey B. Remmel & Zia Uddin - 2009 - Archive for Mathematical Logic 48 (1):115-140.
    We develop a theory of LOGSPACE structures and apply it to construct a number of examples of Abelian Groups which have LOGSPACE presentations. We show that all computable torsion Abelian groups have LOGSPACE presentations and we show that the groups ${\mathbb {Z}, Z(p^{\infty})}$ , and the additive group of the rationals have LOGSPACE presentations over a standard universe such as the tally representation and the binary representation of the natural numbers. We also study the effective categoricity of such groups. For (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Feasible Graphs and Colorings.Douglas Cenzer & Jeffrey Remmel - 1995 - Mathematical Logic Quarterly 41 (3):327-352.
    The problem of when a recursive graph has a recursive k-coloring has been extensively studied by Bean, Schmerl, Kierstead, Remmel, and others. In this paper, we study the polynomial time analogue of that problem. We develop a number of negative and positive results about colorings of polynomial time graphs. For example, we show that for any recursive graph G and for any k, there is a polynomial time graph G′ whose vertex set is {0,1}* such that there is an effective (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Feasible graphs with standard universe.Douglas Cenzer & Jeffrey B. Remmel - 1998 - Annals of Pure and Applied Logic 94 (1-3):21-35.
    A computable graph is constructed which is not computably isomorphic to any polynomial-time graph with a standard universe . Conditions are given under which a computable graph is computably isomorphic to a polynomial-time graph with a standard universe — for example, if every vertex has finite degree. Two special types of graphs are studied. It is shown that any computable tree is recursively isomorphic to a p-time tree with standard universe and that any computable equivalence relation is computably isomorphic to (...)
    Download  
     
    Export citation  
     
    Bookmark