Switch to: References

Add citations

You must login to add citations.
  1. Anti-Realism and Anti-Revisionism in Wittgenstein’s Philosophy of Mathematics.Anderson Nakano - 2020 - Grazer Philosophische Studien 97 (3):451-474.
    Since the publication of the Remarks on the Foundations of Mathematics, Wittgenstein’s interpreters have endeavored to reconcile his general constructivist/anti-realist attitude towards mathematics with his confessed anti-revisionary philosophy. In this article, the author revisits the issue and presents a solution. The basic idea consists in exploring the fact that the so-called “non-constructive results” could be interpreted so that they do not appear non-constructive at all. The author substantiates this solution by showing how the translation of mathematical results, given by the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Heyting’s contribution to the change in research into the foundations of mathematics.Miriam Franchella - 1994 - History and Philosophy of Logic 15 (2):149-172.
    After the 1930s, the research into the foundations of mathematics changed.None of its main directions (logicism, formalism and intuitionism) had any longer the pretension to be the only true mathematics.Usually, the determining factor in the change is considered to be Gödel?s work, while Heyting?s role is neglected.In contrast, in this paper I first describe how Heyting directly suggested the abandonment of the big foundational questions and the putting forward of a new kind of foundational research consisting in the isolation of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The development of intuitionistic logic.Mark van Atten - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Executability and Connexivity in an Interpretation of Griss.Thomas M. Ferguson - 2023 - Studia Logica 112 (1):459-509.
    Although the work of G.F.C. Griss is commonly understood as a program of negationless mathematics, close examination of Griss’s work suggests a more fundamental feature is its executability, a requirement that mental constructions are possible only if corresponding mental activity can be actively carried out. Emphasizing executability reveals that Griss’s arguments against negation leave open several types of negation—including D. Nelson’s strong negation—as compatible with Griss’s intuitionism. Reinterpreting Griss’s program as one of executable mathematics, we iteratively develop a pair of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Negation in Negationless Intuitionistic Mathematics.Thomas Macaulay Ferguson - 2023 - Philosophia Mathematica 31 (1):29-55.
    The mathematician G.F.C. Griss is known for his program of negationless intuitionistic mathematics. Although Griss’s rejection of negation is regarded as characteristic of his philosophy, this is a consequence of an executability requirement that mental constructions presuppose agents’ executing corresponding mental activity. Restoring Griss’s executability requirement to a central role permits a more subtle characterization of the rejection of negation, according to which D. Nelson’s strong constructible negation is compatible with Griss’s principles. This exposes a ‘holographic’ theory of negation in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A negationless interpretation of intuitionistic theories. II.Victor N. Krivtsov - 2000 - Studia Logica 65 (2):155-179.
    This work is a sequel to our [16]. It is shown how Theorem 4 of [16], dealing with the translatability of HA(Heyting's arithmetic) into negationless arithmetic NA, can be extended to the case of intuitionistic arithmetic in higher types.
    Download  
     
    Export citation  
     
    Bookmark   3 citations