Switch to: References

Add citations

You must login to add citations.
  1. Toward a stability theory of tame abstract elementary classes.Sebastien Vasey - 2018 - Journal of Mathematical Logic 18 (2):1850009.
    We initiate a systematic investigation of the abstract elementary classes that have amalgamation, satisfy tameness, and are stable in some cardinal. Assuming the singular cardinal hypothesis, we prove a full characterization of the stability cardinals, and connect the stability spectrum with the behavior of saturated models.We deduce that if a class is stable on a tail of cardinals, then it has no long splitting chains. This indicates that there is a clear notion of superstability in this framework.We also present an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Shelah's eventual categoricity conjecture in tame abstract elementary classes with primes.Sebastien Vasey - 2018 - Mathematical Logic Quarterly 64 (1-2):25-36.
    A new case of Shelah's eventual categoricity conjecture is established: Let be an abstract elementary class with amalgamation. Write and. Assume that is H2‐tame and has primes over sets of the form. If is categorical in some, then is categorical in all. The result had previously been established when the stronger locality assumptions of full tameness and shortness are also required. An application of the method of proof of the mentioned result is that Shelah's categoricity conjecture holds in the context (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Superstability, noetherian rings and pure-semisimple rings.Marcos Mazari-Armida - 2021 - Annals of Pure and Applied Logic 172 (3):102917.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Abstract elementary classes stable in ℵ0.Saharon Shelah & Sebastien Vasey - 2018 - Annals of Pure and Applied Logic 169 (7):565-587.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On universal modules with pure embeddings.Thomas G. Kucera & Marcos Mazari-Armida - 2020 - Mathematical Logic Quarterly 66 (4):395-408.
    We show that certain classes of modules have universal models with respect to pure embeddings: Let R be a ring, T a first‐order theory with an infinite model extending the theory of R‐modules and (where ⩽pp stands for “pure submodule”). Assume has the joint embedding and amalgamation properties. If or, then has a universal model of cardinality λ. As a special case, we get a recent result of Shelah [28, 1.2] concerning the existence of universal reduced torsion‐free abelian groups with (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Simple-like independence relations in abstract elementary classes.Rami Grossberg & Marcos Mazari-Armida - 2021 - Annals of Pure and Applied Logic 172 (7):102971.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Hanf number in the strictly stable case.Saharon Shelah - 2020 - Mathematical Logic Quarterly 66 (3):280-294.
    We associate Hanf numbers to triples where T and T1 are theories and p is a type. We show that the Hanf number for the property: “there is a model M1 of which omits p, but is saturated” is larger than the Hanf number of but smaller than the Hanf number of when T is stable with. In fact, surprisingly, we even characterise the Hanf number of when we fix where T is a first order complete (and stable), and demand.
    Download  
     
    Export citation  
     
    Bookmark  
  • A Note on Torsion Modules with Pure Embeddings.Marcos Mazari-Armida - 2023 - Notre Dame Journal of Formal Logic 64 (4):407-424.
    We study Martsinkovsky–Russell torsion modules with pure embeddings as an abstract elementary class. We give a model-theoretic characterization of the pure-injective and the Σ-pure-injective modules relative to the class of torsion modules assuming that the torsion submodule is a pure submodule. Our characterization of relative Σ-pure-injective modules extends the classical characterization of Gruson and Jenson as well as Zimmermann. We study the limit models of the class and determine when the class is superstable assuming that the torsion submodule is a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraic description of limit models in classes of abelian groups.Marcos Mazari-Armida - 2020 - Annals of Pure and Applied Logic 171 (1):102723.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Stability Results Assuming Tameness, Monster Model, and Continuity of Nonsplitting.Samson Leung - 2024 - Journal of Symbolic Logic 89 (1):383-425.
    Assuming the existence of a monster model, tameness, and continuity of nonsplitting in an abstract elementary class (AEC), we extend known superstability results: let $\mu>\operatorname {LS}(\mathbf {K})$ be a regular stability cardinal and let $\chi $ be the local character of $\mu $ -nonsplitting. The following holds: 1.When $\mu $ -nonforking is restricted to $(\mu,\geq \chi )$ -limit models ordered by universal extensions, it enjoys invariance, monotonicity, uniqueness, existence, extension, and continuity. It also has local character $\chi $. This generalizes (...)
    Download  
     
    Export citation  
     
    Bookmark