Switch to: References

Add citations

You must login to add citations.
  1. Symbioses between mathematical logic and computer science.Andreas Blass - 2016 - Annals of Pure and Applied Logic 167 (10):868-878.
    Download  
     
    Export citation  
     
    Bookmark  
  • Expressive equivalence of least and inflationary fixed-point logic.Stephan Kreutzer - 2004 - Annals of Pure and Applied Logic 130 (1-3):61-78.
    We study the relationship between least and inflationary fixed-point logic. In 1986, Gurevich and Shelah proved that in the restriction to finite structures, the two logics have the same expressive power. On infinite structures however, the question whether there is a formula in IFP not equivalent to any LFP-formula was left open.In this paper, we answer the question negatively, i.e. we show that the two logics are equally expressive on arbitrary structures. We give a syntactic translation of IFP-formulae to LFP-formulae (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Arity hierarchies.Martin Grohe - 1996 - Annals of Pure and Applied Logic 82 (2):103-163.
    Many logics considered in finite model theory have a natural notion of an arity. The purpose of this article is to study the hierarchies which are formed by the fragments of such logics whose formulae are of bounded arity.Based on a construction of finite graphs with a certain property of homogeneity, we develop a method that allows us to prove that the arity hierarchies are strict for several logics, including fixed-point logics, transitive closure logic and its deterministic version, variants of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Almost everywhere equivalence of logics in finite model theory.Lauri Hella, Phokion G. Kolaitis & Kerkko Luosto - 1996 - Bulletin of Symbolic Logic 2 (4):422-443.
    We introduce a new framework for classifying logics on finite structures and studying their expressive power. This framework is based on the concept of almost everywhere equivalence of logics, that is to say, two logics having the same expressive power on a class of asymptotic measure 1. More precisely, if L, L ′ are two logics and μ is an asymptotic measure on finite structures, then $\scr{L}\equiv _{\text{a.e.}}\scr{L}^{\prime}(\mu)$ means that there is a class C of finite structures with μ (C)=1 (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Complete problems for fixed-point logics.Martin Grohe - 1995 - Journal of Symbolic Logic 60 (2):517-527.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On fixed-point logic with counting.Jorg Flum & Martin Grohe - 2000 - Journal of Symbolic Logic 65 (2):777-787.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fixed point logics.Anuj Dawar & Yuri Gurevich - 2002 - Bulletin of Symbolic Logic 8 (1):65-88.
    We consider fixed point logics, i.e., extensions of first order predicate logic with operators defining fixed points. A number of such operators, generalizing inductive definitions, have been studied in the context of finite model theory, including nondeterministic and alternating operators. We review results established in finite model theory, and also consider the expressive power of the resulting logics on infinite structures. In particular, we establish the relationship between inflationary and nondeterministic fixed point logics and second order logic, and we consider (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Generalized quantifiers and pebble games on finite structures.Phokion G. Kolaitis & Jouko A. Väänänen - 1995 - Annals of Pure and Applied Logic 74 (1):23-75.
    First-order logic is known to have a severely limited expressive power on finite structures. As a result, several different extensions have been investigated, including fragments of second-order logic, fixpoint logic, and the infinitary logic L∞ωω in which every formula has only a finite number of variables. In this paper, we study generalized quantifiers in the realm of finite structures and combine them with the infinitary logic L∞ωω to obtain the logics L∞ωω, where Q = {Qi: iε I} is a family (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Choiceless polynomial time, counting and the Cai–Fürer–Immerman graphs.Anuj Dawar, David Richerby & Benjamin Rossman - 2008 - Annals of Pure and Applied Logic 152 (1):31-50.
    We consider Choiceless Polynomial Time , a language introduced by Blass, Gurevich and Shelah, and show that it can express a query originally constructed by Cai, Fürer and Immerman to separate fixed-point logic with counting from image. This settles a question posed by Blass et al. The program we present uses sets of unbounded finite rank: we demonstrate that this is necessary by showing that the query cannot be computed by any program that has a constant bound on the rank (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Undecidability results on two-variable logics.Erich Grädel, Martin Otto & Eric Rosen - 1999 - Archive for Mathematical Logic 38 (4-5):313-354.
    It is a classical result of Mortimer that $L^2$ , first-order logic with two variables, is decidable for satisfiability. We show that going beyond $L^2$ by adding any one of the following leads to an undecidable logic:– very weak forms of recursion, viz.¶(i) transitive closure operations¶(ii) (restricted) monadic fixed-point operations¶– weak access to cardinalities, through the Härtig (or equicardinality) quantifier¶– a choice construct known as Hilbert's $\epsilon$ -operator.In fact all these extensions of $L^2$ prove to be undecidable both for satisfiability, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Finite variable logics in descriptive complexity theory.Martin Grohe - 1998 - Bulletin of Symbolic Logic 4 (4):345-398.
    Throughout the development of finite model theory, the fragments of first-order logic with only finitely many variables have played a central role. This survey gives an introduction to the theory of finite variable logics and reports on recent progress in the area.For each k ≥ 1 we let Lk be the fragment of first-order logic consisting of all formulas with at most k variables. The logics Lk are the simplest finite-variable logics. Later, we are going to consider infinitary variants and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Tailoring recursion for complexity.Erich Grädel & Yuri Gurevich - 1995 - Journal of Symbolic Logic 60 (3):952-969.
    We design functional algebras that characterize various complexity classes of global functions. For this purpose, classical schemata from recursion theory are tailored for capturing complexity. In particular we present a functional analog of first-order logic and describe algebras of the functions computable in nondeterministic logarithmic space, deterministic and nondeterministic polynomial time, and for the functions computable by AC 1 -circuits.
    Download  
     
    Export citation  
     
    Bookmark  
  • Johan van Benthem on Logic and Information Dynamics.Alexandru Baltag & Sonja Smets (eds.) - 2014 - Cham, Switzerland: Springer International Publishing.
    This book illustrates the program of Logical-Informational Dynamics. Rational agents exploit the information available in the world in delicate ways, adopt a wide range of epistemic attitudes, and in that process, constantly change the world itself. Logical-Informational Dynamics is about logical systems putting such activities at center stage, focusing on the events by which we acquire information and change attitudes. Its contributions show many current logics of information and change at work, often in multi-agent settings where social behavior is essential, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to define a linear order on finite models.Lauri Hella, Phokion G. Kolaitis & Kerkko Luosto - 1997 - Annals of Pure and Applied Logic 87 (3):241-267.
    We carry out a systematic investigation of the definability of linear order on classes of finite rigid structures. We obtain upper and lower bounds for the expressibility of linear order in various logics that have been studied extensively in finite model theory, such as least fixpoint logic LFP, partial fixpoint logic PFP, infinitary logic Lω∞ω with a finite number of variables, as well as the closures of these logics under implicit definitions. Moreover, we show that the upper and lower bounds (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The expressive power of fixed-point logic with counting.Martin Otto - 1996 - Journal of Symbolic Logic 61 (1):147-176.
    We study the expressive power in the finite of the logic Fixed-Point+Counting, the extension of first-order logic which is obtained through adding both the fixed-point constructor and the ability to count. To this end an isomorphism preserving (`generic') model of computation is introduced whose PTime restriction exactly corresponds to this level of expressive power, while its PSpace restriction corresponds to While+Counting. From this model we obtain a normal form which shows a rather clear separation of the relational vs. the arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)In the random graph G(n, p), p = n−a: If ψ has probability O(n−ε) for every ε > 0 then it has probability O(e−nε) for some ε > 0.Saharon Shelah - 1996 - Annals of Pure and Applied Logic 82 (1):97-102.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hierarchies in transitive closure logic, stratified Datalog and infinitary logic.Erich Grädel & Gregory L. McColm - 1996 - Annals of Pure and Applied Logic 77 (2):169-199.
    We establish a general hierarchy theorem for quantifier classes in the infinitary logic L∞ωωon finite structures. In particular, it is shown that no infinitary formula with bounded number of universal quantifiers can express the negation of a transitive closure.This implies the solution of several open problems in finite model theory: On finite structures, positive transitive closure logic is not closed under negation. More generally the hierarchy defined by interleaving negation and transitive closure operators is strict. This proves a conjecture of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)In the random graph< i> G(< i> n,< i> p),< i> p=< i> n< sup>− a: If ψ has probability< i> O(< i> n< sup>− ε) for every< i> ε> 0 then it has probability< i> O(< i> e< sup>− nε) for some< i> ε_> 0. [REVIEW]Saharon Shelah - 1996 - Annals of Pure and Applied Logic 82 (1):97-102.
    Download  
     
    Export citation  
     
    Bookmark  
  • Context-sensitive transitive closure operators.Iain A. Stewart - 1994 - Annals of Pure and Applied Logic 66 (3):277-301.
    We introduce a new logical operator CSTC and show that incorporating this operator into first-order logic enables as to capture the complexity class PSPACE. We also show that by varying how the operator is applied we can capture the complexity classes P, NP, the classes of the Polynomial Hierarchy PH, and PSPACE. As such, the operator CSTC can be regarded as a general purpose operator. We also give applications of these characterizations by showing that P and NP coincide with those (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Inductive situation calculus.Marc Denecker & Eugenia Ternovska - 2007 - Artificial Intelligence 171 (5-6):332-360.
    Download  
     
    Export citation  
     
    Bookmark   1 citation