Switch to: References

Add citations

You must login to add citations.
  1. Wigner’s Friend Depends on Self-Contradictory Quantum Amplification.Andrew Knight - manuscript
    In a recent paper, Zukowski and Markiewicz showed that Wigner’s Friend (and, by extension, Schrodinger’s Cat) can be eliminated as physical possibilities on purely logical grounds. I validate this result and demonstrate the source of the contradiction in a simple experiment in which a scientist S attempts to measure the position of object |O⟩ = |A⟩S +|B⟩S by using measuring device M chosen so that |A⟩M ≈ |A⟩S and |B⟩M ≈ |B⟩S. I assume that the measurement occurs by quantum amplification (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum computing.Amit Hagar & Michael Cuffaro - 2019 - Stanford Encyclopedia of Philosophy.
    Combining physics, mathematics and computer science, quantum computing and its sister discipline of quantum information have developed in the past few decades from visionary ideas to two of the most fascinating areas of quantum theory. General interest and excitement in quantum computing was initially triggered by Peter Shor (1994) who showed how a quantum algorithm could exponentially “speed-up” classical computation and factor large numbers into primes far more efficiently than any (known) classical algorithm. Shor’s algorithm was soon followed by several (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the (Im)possibility of Scalable Quantum Computing.Andrew Knight - manuscript
    The potential for scalable quantum computing depends on the viability of fault tolerance and quantum error correction, by which the entropy of environmental noise is removed during a quantum computation to maintain the physical reversibility of the computer’s logical qubits. However, the theory underlying quantum error correction applies a linguistic double standard to the words “noise” and “measurement” by treating environmental interactions during a quantum computation as inherently reversible, and environmental interactions at the end of a quantum computation as irreversible (...)
    Download  
     
    Export citation  
     
    Bookmark