Switch to: References

Add citations

You must login to add citations.
  1. Pantheism and current ontology.Eric Steinhart - 2004 - Religious Studies 40 (1):63-80.
    Pantheism claims: (1) there exists an all-inclusive unity; and (2) that unity is divine. I review three current and scientifically viable ontologies to see how pantheism can be developed in each. They are: (1) materialism; (2) Platonism; and (3) class-theoretic Pythagoreanism. I show how each ontology has an all-inclusive unity. I check the degree to which that unity is: eternal, infinite, complex, necessary, plentiful, self-representative, holy. I show how each ontology solves the problem of evil (its theodicy) and provides for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • To Continue With Continuity.Martin Cooke - 2005 - Metaphysica 6 (2):91-109.
    The metaphysical concept of continuity is important, not least because physical continua are not known to be impossible. While it is standard to model them with a mathematical continuum based upon set-theoretical intuitions, this essay considers, as a contribution to the debate about the adequacy of those intuitions, the neglected intuition that dividing the length of a line by the length of an individual point should yield the line’s cardinality. The algebraic properties of that cardinal number are derived pre-theoretically from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Plurals and complexes.Keith Hossack - 2000 - British Journal for the Philosophy of Science 51 (3):411-443.
    Atomism denies that complexes exist. Common-sense metaphysics may posit masses, composite individuals and sets, but atomism says there are only simples. In a singularist logic, it is difficult to make a plausible case for atomism. But we should accept plural logic, and then atomism can paraphrase away apparent reference to complexes. The paraphrases require unfamiliar plural universals, but these are of independent interest; for example, we can identify numbers and sets with plural universals. The atomist paraphrases would fail if plurals (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • (2 other versions)Sts: A Structural Theory Of Sets.A. Baltag - 1999 - Logic Journal of the IGPL 7 (4):481-515.
    We explore a non-classical, universal set theory, based on a purely 'structural' conception of sets. A set is a transfinite process of unfolding of an arbitrary binary structure, with identity of sets given by the observational equivalence between such processes. We formalize these notions using infinitary modal logic, which provides partial descriptions for set structures up to observational equivalence. We describe the comprehension and topological properties of the resulting set-theory, and we use it to give non-classical solutions to classical paradoxes, (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • New V, ZF and Abstraction.Stewart Shapiro & Alan Weir - 1999 - Philosophia Mathematica 7 (3):293-321.
    We examine George Boolos's proposed abstraction principle for extensions based on the limitation-of-size conception, New V, from several perspectives. Crispin Wright once suggested that New V could serve as part of a neo-logicist development of real analysis. We show that it fails both of the conservativeness criteria for abstraction principles that Wright proposes. Thus, we support Boolos against Wright. We also show that, when combined with the axioms for Boolos's iterative notion of set, New V yields a system equivalent to (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Zermelo and set theory.Akihiro Kanamori - 2004 - Bulletin of Symbolic Logic 10 (4):487-553.
    Ernst Friedrich Ferdinand Zermelo transformed the set theory of Cantor and Dedekind in the first decade of the 20th century by incorporating the Axiom of Choice and providing a simple and workable axiomatization setting out generative set-existence principles. Zermelo thereby tempered the ontological thrust of early set theory, initiated the delineation of what is to be regarded as set-theoretic, drawing out the combinatorial aspects from the logical, and established the basic conceptual framework for the development of modern set theory. Two (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • E pluribus unum: Plural logic and set theory.John P. Burgess - 2004 - Philosophia Mathematica 12 (3):193-221.
    A new axiomatization of set theory, to be called Bernays-Boolos set theory, is introduced. Its background logic is the plural logic of Boolos, and its only positive set-theoretic existence axiom is a reflection principle of Bernays. It is a very simple system of axioms sufficient to obtain the usual axioms of ZFC, plus some large cardinals, and to reduce every question of plural logic to a question of set theory.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • A Mathematical Model of Divine Infinity.Eric Steinhart - 2009 - Theology and Science 7 (3):261-274.
    Mathematics is obviously important in the sciences. And so it is likely to be equally important in any effort that aims to understand God in a scientifically significant way or that aims to clarify the relations between science and theology. The degree to which God has any perfection is absolutely infinite. We use contemporary mathematics to precisely define that absolute infinity. For any perfection, we use transfinite recursion to define an endlessly ascending series of degrees of that perfection. That series (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An axiom schema of comprehension of zermelo–fraenkel–skolem set theory.Johannes Heidema - 1990 - History and Philosophy of Logic 11 (1):59-65.
    Unrestricted use of the axiom schema of comprehension, ?to every mathematically (or set-theoretically) describable property there corresponds the set of all mathematical (or set-theoretical) objects having that property?, leads to contradiction. In set theories of the Zermelo?Fraenkel?Skolem (ZFS) style suitable instances of the comprehension schema are chosen ad hoc as axioms, e.g.axioms which guarantee the existence of unions, intersections, pairs, subsets, empty set, power sets and replacement sets. It is demonstrated that a uniform syntactic description may be given of acceptable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gestalt and functional dependence.Peter M. Simons - 1988 - In Barry Smith (ed.), Foundations of Gestalt Theory. Philosophia. pp. 158--190.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Conceptions and paradoxes of sets.G. Aldo Antonelli - 1999 - Philosophia Mathematica 7 (2):136-163.
    This paper is concerned with the way different axiom systems for set theory can be justified by appeal to such intuitions as limitation of size, predicativity, stratification, etc. While none of the different conceptions historically resulting from the impetus to provide a solution to the paradoxes turns out to rest on an intuition providing an unshakeable foundation,'each supplies a picture of the set-theoretic universe that is both useful and internally well motivated. The same is true of more recently proposed axiom (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Erdős and set theory.Akihiro Kanamori - 2014 - Bulletin of Symbolic Logic 20 (4):449-490,.
    Paul Erdős was a mathematicianpar excellencewhose results and initiatives have had a large impact and made a strong imprint on the doing of and thinking about mathematics. A mathematician of alacrity, detail, and collaboration, Erdős in his six decades of work moved and thought quickly, entertained increasingly many parameters, and wrote over 1500 articles, the majority with others. Hismodus operandiwas to drive mathematics through cycles of problem, proof, and conjecture, ceaselessly progressing and ever reaching, and hismodus vivendiwas to be itinerant (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logicismus a paradox (II).Vojtěch Kolman - 2005 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 12 (2):121-140.
    This is the first part of the essay devoted to the story of logicism, in particular to its Fregean version. Reviewing the classical period of Fregean studies, we first point out some critical moments of Frege‘s argumentation in the Grundla­gen, in order to be able later to differentiate between its salvageable and defec­tive features. We work on the presumption that there are no easy, catego­rical an­swers to questions like “Is logicism dead?“: Wittgenstein’s cri­tique of the foundational program as well as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Russell, Jourdain and ‘limitation of size’. [REVIEW]Michael Hallett - 1981 - British Journal for the Philosophy of Science 32 (4):381-399.
    Download  
     
    Export citation  
     
    Bookmark  
  • Edmund Husserl (1859-1938).Denis Fisette (ed.) - 2009 - Montreal: Philosophiques.
    Ce numéro de Philosophiques rend hommage au philosophe d’origine autrichienne Edmund Husserl (1859-1938) à l’occasion de son 150e anniversaire de naissance. Il est consacré à l’oeuvre du jeune Husserl durant la période de Halle (1886-1901) et réunit plusieurs spécialistes des études husserliennes qui jettent un regard neuf sur cette période méconnue dans la philosophie du père de la phénoménologie. Avec un souci de situer Husserl dans le contexte historique auquel appartiennent ses principaux interlocuteurs durant cette période, ces études portent sur (...)
    Download  
     
    Export citation  
     
    Bookmark