Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maximality Principles in Set Theory.Luca Incurvati - 2017 - Philosophia Mathematica 25 (2):159-193.
    In set theory, a maximality principle is a principle that asserts some maximality property of the universe of sets or some part thereof. Set theorists have formulated a variety of maximality principles in order to settle statements left undecided by current standard set theory. In addition, philosophers of mathematics have explored maximality principles whilst attempting to prove categoricity theorems for set theory or providing criteria for selecting foundational theories. This article reviews recent work concerned with the formulation, investigation and justification (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • First-order modal logic in the necessary framework of objects.Peter Fritz - 2016 - Canadian Journal of Philosophy 46 (4-5):584-609.
    I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that only the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Composition as a Kind of Identity.Phillip Bricker - 2016 - Inquiry: An Interdisciplinary Journal of Philosophy 59 (3):264-294.
    Composition as identity, as I understand it, is a theory of the composite structure of reality. The theory’s underlying logic is irreducibly plural; its fundamental primitive is a generalized identity relation that takes either plural or singular arguments. Strong versions of the theory that incorporate a generalized version of the indiscernibility of identicals are incompatible with the framework of plural logic, and should be rejected. Weak versions of the theory that are based on the idea that composition is merely analogous (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Extensionalizing Intensional Second-Order Logic.Jonathan Payne - 2015 - Notre Dame Journal of Formal Logic 56 (1):243-261.
    Neo-Fregean approaches to set theory, following Frege, have it that sets are the extensions of concepts, where concepts are the values of second-order variables. The idea is that, given a second-order entity $X$, there may be an object $\varepsilon X$, which is the extension of X. Other writers have also claimed a similar relationship between second-order logic and set theory, where sets arise from pluralities. This paper considers two interpretations of second-order logic—as being either extensional or intensional—and whether either is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The potential hierarchy of sets.Øystein Linnebo - 2013 - Review of Symbolic Logic 6 (2):205-228.
    Some reasons to regard the cumulative hierarchy of sets as potential rather than actual are discussed. Motivated by this, a modal set theory is developed which encapsulates this potentialist conception. The resulting theory is equi-interpretable with Zermelo Fraenkel set theory but sheds new light on the set-theoretic paradoxes and the foundations of set theory.
    Download  
     
    Export citation  
     
    Bookmark   103 citations  
  • Note on Absolute Provability and Cantorian Comprehension.Holger A. Leuz - manuscript
    We will explicate Cantor’s principle of set existence using the Gödelian intensional notion of absolute provability and John Burgess’ plural logical concept of set formation. From this Cantorian Comprehension principle we will derive a conditional result about the question whether there are any absolutely unprovable mathematical truths. Finally, we will discuss the philosophical significance of the conditional result.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Demarcation between Philosophy and Science.Gustavo Fernández Díez - 2010 - Croatian Journal of Philosophy 10 (2):131-146.
    This paper is based on a criterion recently proposed by Richard Fumerton for demarcating philosophy of mind and cognitive science. I suggest to extend it to a demarcation criterion between philosophy and science in general, and put it in the context of the historical changes of boundaries between the philosophical and the scientifi c fi eld. I point to a number of philosophical claims and approaches that have been made utterly obsolete by the advancement of science, and conjecture that a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Note on Plural Logic.Gustavo Fernández Díez - 2010 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 17 (2):150-162.
    A distinction is introduced between itemized and non-itemized plural predication. It is argued that a full-fledged system of plural logic is not necessary in order to account for the validity of inferences concerning itemized collective predication. Instead, it is shown how this type of inferences can be adequately dealt with in a first-order logic system, after small modifications on the standard treatment. The proposed system, unlike plural logic, has the advantage of preserving completeness. And as a result, inferences such as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mathematical determinacy and the transferability of aboutness.Stephen Pollard - 2007 - Synthese 159 (1):83-98.
    Competent speakers of natural languages can borrow reference from one another. You can arrange for your utterances of ‘Kirksville’ to refer to the same thing as my utterances of ‘Kirksville’. We can then talk about the same thing when we discuss Kirksville. In cases like this, you borrow “ aboutness ” from me by borrowing reference. Now suppose I wish to initiate a line of reasoning applicable to any prime number. I might signal my intention by saying, “Let p be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Boolos on the justification of set theory.Alexander Paseau - 2007 - Philosophia Mathematica 15 (1):30-53.
    George Boolos has argued that the iterative conception of set justifies most, but not all, the ZFC axioms, and that a second conception of set, the Frege-von Neumann conception (FN), justifies the remaining axioms. This article challenges Boolos's claim that FN does better than the iterative conception at justifying the axioms in question.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Measuring Ontological Simplicity.Noël B. Saenz - 2024 - Ergo: An Open Access Journal of Philosophy 11 (25):652-688.
    Standard approaches to ontological simplicity focus either on the number of things or types a theory posits or on the number of fundamental things or types a theory posits. In this paper, I suggest a ground-theoretic approach that focuses on the number of something else. After getting clear on what this approach amounts to, I motivate it, defend it, and complete it.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reflective Mereology.Bokai Yao - 2023 - Journal of Philosophical Logic 52 (4):1171-1196.
    I propose a new theory of mereology based on a mereological reflection principle. Reflective mereology has natural fusion principles but also refutes certain principles of classical mereology such as Universal Fusion and Fusion Uniqueness. Moreover, reflective mereology avoids Uzquiano’s cardinality problem–the problem that classical mereology tends to clash with set theory when they both quantify over everything. In particular, assuming large cardinals, I construct a model of reflective mereology and second-order ZFCU with Limitation of Size. In the model, classical mereology (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In Defence of Discrete Plural Logic (or How to Avoid Logical Overmedication When Dealing with Internally Singularized Pluralities).Gustavo Picazo - 2022 - Disputatio 14 (64):51-63.
    In recent decades, plural logic has established itself as a well-respected member of the extensions of first-order classical logic. In the present paper, I draw attention to the fact that among the examples that are commonly given in order to motivate the need for this new logical system, there are some in which the elements of the plurality in question are internally singularized (e.g. ‘Whitehead and Russell wrote Principia Mathematica’), while in others they are not (e.g. ‘Some philosophers wrote Principia (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Salvatore Florio* and Øystein Linnebo**. The Many and the One. A Philosophical Study of Plural Logic.Francesca Boccuni - 2022 - Philosophia Mathematica 30 (3):369-381.
    Several natural languages such as English contain prima facie different kinds of referential and quantificational expressions. In particular, natural languages.
    Download  
     
    Export citation  
     
    Bookmark  
  • Essence and Necessity.Andreas Ditter - 2022 - Journal of Philosophical Logic 51 (3):653-690.
    What is the relation between metaphysical necessity and essence? This paper defends the view that the relation is one of identity: metaphysical necessity is a special case of essence. My argument consists in showing that the best joint theory of essence and metaphysical necessity is one in which metaphysical necessity is just a special case of essence. The argument is made against the backdrop of a novel, higher-order logic of essence, whose core features are introduced in the first part of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Closed Structure.Peter Fritz, Harvey Lederman & Gabriel Uzquiano - 2021 - Journal of Philosophical Logic 50 (6):1249-1291.
    According to the structured theory of propositions, if two sentences express the same proposition, then they have the same syntactic structure, with corresponding syntactic constituents expressing the same entities. A number of philosophers have recently focused attention on a powerful argument against this theory, based on a result by Bertrand Russell, which shows that the theory of structured propositions is inconsistent in higher order-logic. This paper explores a response to this argument, which involves restricting the scope of the claim that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Level theory, part 1: Axiomatizing the bare idea of a cumulative hierarchy of sets.Tim Button - 2021 - Bulletin of Symbolic Logic 27 (4):436-460.
    The following bare-bones story introduces the idea of a cumulative hierarchy of pure sets: 'Sets are arranged in stages. Every set is found at some stage. At any stage S: for any sets found before S, we find a set whose members are exactly those sets. We find nothing else at S.' Surprisingly, this story already guarantees that the sets are arranged in well-ordered levels, and suffices for quasi-categoricity. I show this by presenting Level Theory, a simplification of set theories (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ontology and Arbitrariness.David Builes - 2022 - Australasian Journal of Philosophy 100 (3):485-495.
    In many different ontological debates, anti-arbitrariness considerations push one towards two opposing extremes. For example, in debates about mereology, one may be pushed towards a maximal ontology (mereological universalism) or a minimal ontology (mereological nihilism), because any intermediate view seems objectionably arbitrary. However, it is usually thought that anti-arbitrariness considerations on their own cannot decide between these maximal or minimal views. I will argue that this is a mistake. Anti-arbitrariness arguments may be used to motivate a certain popular thesis in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Conceivability, Essence, and Haecceities.David Elohim - manuscript
    This essay aims to redress the contention that epistemic possibility cannot be a guide to the principles of modal metaphysics. I introduce a novel epistemic two-dimensional truthmaker semantics. I argue that the interaction between the two-dimensional framework and the mereological parthood relation, which is super-rigid, enables epistemic possibilities and truthmakers with regard to parthood to be a guide to its metaphysical profile. I specify, further, a two-dimensional formula encoding the relation between the epistemic possibility and verification of essential properties obtaining (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Many and the One: A Philosophical Study of Plural Logic.Salvatore Florio & Øystein Linnebo - 2021 - Oxford, England: Oxford University Press.
    Plural expressions found in natural languages allow us to talk about many objects simultaneously. Plural logic — a logical system that takes plurals at face value — has seen a surge of interest in recent years. This book explores its broader significance for philosophy, logic, and linguistics. What can plural logic do for us? Are the bold claims made on its behalf correct? After introducing plural logic and its main applications, the book provides a systematic analysis of the relation between (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Indefinite extensibility and the principle of sufficient reason.Geoffrey Hall - 2020 - Philosophical Studies 178 (2):471-492.
    The principle of sufficient reason threatens modal collapse. Some have suggested that by appealing to the indefinite extensibility of contingent truth, the threat is neutralized. This paper argues that this is not so. If the indefinite extensibility of contingent truth is developed in an analogous fashion to the most promising models of the indefinite extensibility of the concept set, plausible principles permit the derivation of modal collapse.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • From plurals to superplurals: in defence of higher-level plural logic.Berta Grimau Roca - 2018 - Dissertation, University of Glasgow
    Plural Logic is an extension of First-Order Logic with plural terms and quantifiers. When its plural terms are interpreted as denoting more than one object at once, Plural Logic is usually taken to be ontologically innocent: plural quantifiers do not require a domain of their own, but range plurally over the first-order domain of quantification. Given that Plural Logic is equi-interpretable with Monadic Second-Order Logic, it gives us its expressive power at the low ontological cost of a first-order language. This (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Strong Reflection Principle.Sam Roberts - 2017 - Review of Symbolic Logic 10 (4):651-662.
    This article introduces a new reflection principle. It is based on the idea that whatever is true in all entities of some kind is also true in a set-sized collection of them. Unlike standard reflection principles, it does not re-interpret parameters or predicates. This allows it to be both consistent in all higher-order languages and remarkably strong. For example, I show that in the language of second-order set theory with predicates for a satisfaction relation, it is consistent relative to the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Abstracta.Gonçalo Santos - 2014 - Compêndio Em Linha de Problemas de Filosofia Analítica.
    A noção de objecto abstracto desempenha um papel central em diferentes debates filosóficos contemporâneos, da metafísica à estética, passando pela filosofia da linguagem. A sua origem está contudo relacionada com a filosofia da matemática e em particular, com o trabalho de Frege nos fundamentos da aritmética. O nosso primeiro objectivo será assim o de explicar o contributo desta noção para o entendimento Fregeano da realidade matemática. Veremos também que, em virtude de certas dificuldades inerentes ao projeto Fregeano, a dada altura (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Vindication of Logicism.Peter Roeper - 2016 - Philosophia Mathematica 24 (3):360-378.
    Frege regarded Hume's Principle as insufficient for a logicist account of arithmetic, as it does not identify the numbers; it does not tell us which objects the numbers are. His solution, generally regarded as a failure, was to propose certain sets as the referents of numerical terms. I suggest instead that numbers are properties of pluralities, where these properties are treated as objects. Given this identification, the truth-conditions of the statements of arithmetic can be obtained from logical principles with the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Grounding Megethology on Plural Reference.Massimiliano Carrara & Enrico Martino - 2015 - Studia Logica 103 (4):697-711.
    In Mathematics is megethology Lewis reconstructs set theory combining mereology with plural quantification. He introduces megethology, a powerful framework in which one can formulate strong assumptions about the size of the universe of individuals. Within this framework, Lewis develops a structuralist class theory, in which the role of classes is played by individuals. Thus, if mereology and plural quantification are ontologically innocent, as Lewis maintains, he achieves an ontological reduction of classes to individuals. Lewis’work is very attractive. However, the alleged (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantifiers and Quantification.Gabriel Uzquiano - 2014 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Varieties of Indefinite Extensibility.Gabriel Uzquiano - 2015 - Notre Dame Journal of Formal Logic 56 (1):147-166.
    We look at recent accounts of the indefinite extensibility of the concept set and compare them with a certain linguistic model of indefinite extensibility. We suggest that the linguistic model has much to recommend over alternative accounts of indefinite extensibility, and we defend it against three prima facie objections.
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)Plural quantification.Ø Linnebo - 2008 - Stanford Encyclopedia of Philosophy.
    Ordinary English contains different forms of quantification over objects. In addition to the usual singular quantification, as in 'There is an apple on the table', there is plural quantification, as in 'There are some apples on the table'. Ever since Frege, formal logic has favored the two singular quantifiers ∀x and ∃x over their plural counterparts ∀xx and ∃xx (to be read as for any things xx and there are some things xx). But in recent decades it has been argued (...)
    Download  
     
    Export citation  
     
    Bookmark   73 citations  
  • Abstraction Reconceived.J. P. Studd - 2016 - British Journal for the Philosophy of Science 67 (2):579-615.
    Neologicists have sought to ground mathematical knowledge in abstraction. One especially obstinate problem for this account is the bad company problem. The leading neologicist strategy for resolving this problem is to attempt to sift the good abstraction principles from the bad. This response faces a dilemma: the system of ‘good’ abstraction principles either falls foul of the Scylla of inconsistency or the Charybdis of being unable to recover a modest portion of Zermelo–Fraenkel set theory with its intended generality. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Leśniewski's Systems of Logic and Foundations of Mathematics.Rafal Urbaniak - 2013 - Cham, Switzerland: Springer.
    With material on his early philosophical views, his contributions to set theory and his work on nominalism and higher-order quantification, this book offers a uniquely expansive critical commentary on one of analytical philosophy’s great ...
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Meghetologia.Massimiliano Carrara & Filippo Mancini - 2020 - Aphex. Portale Italiano di Filosofia Analitica 21 (1):1-49.
    Megethology is the second-order theory of the part-whole relation developed by David Lewis, and it is obtained by combining plural quantification with classical extensional mereology. It can express some hypotheses about the size of the domain such as that there are inaccessibly many atoms. This will prove enough to get the orthodox set theory. Then, megethology is a possible foundation for mathematics. This paper is an introduction to megethology.
    Download  
     
    Export citation  
     
    Bookmark  
  • Burgess on Plural Logic and Set Theory.O. Linnebo - 2007 - Philosophia Mathematica 15 (1):79-93.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Price of Universality.Gabriel Uzquiano - 2006 - Philosophical Studies 129 (1):137-169.
    I present a puzzle for absolutely unrestricted quantification. One important advantage of absolutely unrestricted quantification is that it allows us to entertain perfectly general theories. Whereas most of our theories restrict attention to one or another parcel of reality, other theories are genuinely comprehensive taking absolutely all objects into their domain. The puzzle arises when we notice that absolutely unrestricted theories sometimes impose incompatible constraints on the size of the universe.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Composition as Identity: A Study in Ontology and Philosophical Logic.Einar Bohn - 2009 - Dissertation, University of Massachusetts, Amherst
    In this work I first develop, motivate, and defend the view that mereological composition, the relation between an object and all its parts collectively, is a relation of identity. I argue that this view implies and hence can explain the logical necessity of classical mereology, the formal study of the part-whole relation. I then critically discuss four contemporary views of the same kind. Finally, I employ my thesis in a recent discussion of whether the world is fundamentally one in number.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Thomas McKay. Plural predication.John P. Burgess - 2008 - Philosophia Mathematica 16 (1):133-140.
    This work, the first book-length study of its topic, is an important contribution to the literature of philosophical logic and philosophy of language, with implications for other branches of philosophy, including philosophy of mathematics. However, five of the book's ten chapters , including many of the author's most original contributions, are devoted to issues about natural language, and lie pretty well outside the scope of this journal, not to mention that of the reviewer's competence. For this reason I will here (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Russell Should Have Said to Burali–Forti.Salvatore Florio & Graham Leach-Krouse - 2017 - Review of Symbolic Logic 10 (4):682-718.
    The paradox that appears under Burali-Forti’s name in many textbooks of set theory is a clever piece of reasoning leading to an unproblematic theorem. The theorem asserts that the ordinals do not form a set. For such a set would be—absurdly—an ordinal greater than any ordinal in the set of all ordinals. In this article, we argue that the paradox of Burali-Forti is first and foremost a problem about concept formation by abstraction, not about sets. We contend, furthermore, that some (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Plural quantifiers: a modal interpretation.Rafal Urbaniak - 2014 - Synthese 191 (7):1-22.
    One of the standard views on plural quantification is that its use commits one to the existence of abstract objects–sets. On this view claims like ‘some logicians admire only each other’ involve ineliminable quantification over subsets of a salient domain. The main motivation for this view is that plural quantification has to be given some sort of semantics, and among the two main candidates—substitutional and set-theoretic—only the latter can provide the language of plurals with the desired expressive power (given that (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Grammar and sets.B. H. Slater - 2006 - Australasian Journal of Philosophy 84 (1):59 – 73.
    'Philosophy arises through misconceptions of grammar', said Wittgenstein. Few people have believed him, and probably none, therefore, working in the area of the philosophy of mathematics. Yet his assertion is most evidently the case in the philosophy of Set Theory, as this paper demonstrates (see also Rodych 2000). The motivation for twentieth century Set Theory has rested on the belief that everything in Mathematics can be defined in terms of sets [Maddy 1994: 4]. But not only are there notable items (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Dummett on Indefinite Extensibility.Øystein Linnebo - 2018 - Philosophical Issues 28 (1):196-220.
    Dummett’s notion of indefinite extensibility is influential but obscure. The notion figures centrally in an alternative Dummettian argument for intuitionistic logic and anti-realism, distinct from his more famous, meaning-theoretic arguments to the same effect. Drawing on ideas from Dummett, a precise analysis of indefinite extensibility is proposed. This analysis is used to reconstruct the poorly understood alternative argument. The plausibility of the resulting argument is assessed.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Rigour, Proof and Soundness.Oliver M. W. Tatton-Brown - 2020 - Dissertation, University of Bristol
    The initial motivating question for this thesis is what the standard of rigour in modern mathematics amounts to: what makes a proof rigorous, or fail to be rigorous? How is this judged? A new account of rigour is put forward, aiming to go some way to answering these questions. Some benefits of the norm of rigour on this account are discussed. The account is contrasted with other remarks that have been made about mathematical proof and its workings, and is tested (...)
    Download  
     
    Export citation  
     
    Bookmark