Switch to: References

Citations of:

Frege and Hilbert

In Michael Potter, Joan Weiner, Warren Goldfarb, Peter Sullivan, Alex Oliver & Thomas Ricketts (eds.), The Cambridge Companion to Frege. New York: Cambridge University Press. pp. 413--464 (2010)

Add citations

You must login to add citations.
  1. Mathematical Concepts and Investigative Practice.Dirk Schlimm - 2012 - In Uljana Feest & Friedrich Steinle (eds.), Scientific Concepts and Investigative Practice. de Gruyter. pp. 127-148.
    In this paper I investigate two notions of concepts that have played a dominant role in 20th century philosophy of mathematics. According to the first, concepts are definite and fixed; in contrast, according to the second notion concepts are open and subject to modifications. The motivations behind these two incompatible notions and how they can be used to account for conceptual change are presented and discussed. On the basis of historical developments in mathematics I argue that both notions of concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert's Objectivity.Lydia Patton - 2014 - Historia Mathematica 41 (2):188-203.
    Detlefsen (1986) reads Hilbert's program as a sophisticated defense of instrumentalism, but Feferman (1998) has it that Hilbert's program leaves significant ontological questions unanswered. One such question is of the reference of individual number terms. Hilbert's use of admittedly "meaningless" signs for numbers and formulae appears to impair his ability to establish the reference of mathematical terms and the content of mathematical propositions (Weyl (1949); Kitcher (1976)). The paper traces the history and context of Hilbert's reasoning about signs, which illuminates (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • XV—On Consistency and Existence in Mathematics.Walter Dean - 2021 - Proceedings of the Aristotelian Society 120 (3):349-393.
    This paper engages the question ‘Does the consistency of a set of axioms entail the existence of a model in which they are satisfied?’ within the frame of the Frege-Hilbert controversy. The question is related historically to the formulation, proof and reception of Gödel’s Completeness Theorem. Tools from mathematical logic are then used to argue that there are precise senses in which Frege was correct to maintain that demonstrating consistency is as difficult as it can be, but also in which (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What are Implicit Definitions?Eduardo N. Giovannini & Georg Schiemer - 2019 - Erkenntnis 86 (6):1661-1691.
    The paper surveys different notions of implicit definition. In particular, we offer an examination of a kind of definition commonly used in formal axiomatics, which in general terms is understood as providing a definition of the primitive terminology of an axiomatic theory. We argue that such “structural definitions” can be semantically understood in two different ways, namely as specifications of the meaning of the primitive terms of a theory and as definitions of higher-order mathematical concepts or structures. We analyze these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege’s ‘On the Foundations of Geometry’ and Axiomatic Metatheory.Günther Eder - 2016 - Mind 125 (497):5-40.
    In a series of articles dating from 1903 to 1906, Frege criticizes Hilbert’s methodology of proving the independence and consistency of various fragments of Euclidean geometry in his Foundations of Geometry. In the final part of the last article, Frege makes his own proposal as to how the independence of genuine axioms should be proved. Frege contends that independence proofs require the development of a ‘new science’ with its own basic truths. This paper aims to provide a reconstruction of this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy’s Loss of Logic to Mathematics: An Inadequately Understood Take-Over.Woosuk Park - 2018 - Cham, Switzerland: Springer Verlag.
    This book offers a historical explanation of important philosophical problems in logic and mathematics, which have been neglected by the official history of modern logic. It offers extensive information on Gottlob Frege’s logic, discussing which aspects of his logic can be considered truly innovative in its revolution against the Aristotelian logic. It presents the work of Hilbert and his associates and followers with the aim of understanding the revolutionary change in the axiomatic method. Moreover, it offers useful tools to understand (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Analysis and Interpretation in the Exact Sciences: Essays in Honour of William Demopoulos.Melanie Frappier, Derek Brown & Robert DiSalle (eds.) - 2011 - Dordrecht and London: Springer.
    The essays in this volume concern the points of intersection between analytic philosophy and the philosophy of the exact sciences. More precisely, it concern connections between knowledge in mathematics and the exact sciences, on the one hand, and the conceptual foundations of knowledge in general. Its guiding idea is that, in contemporary philosophy of science, there are profound problems of theoretical interpretation-- problems that transcend both the methodological concerns of general philosophy of science, and the technical concerns of philosophers of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege and the origins of model theory in nineteenth century geometry.Günther Eder - 2019 - Synthese 198 (6):5547-5575.
    The aim of this article is to contribute to a better understanding of Frege’s views on semantics and metatheory by looking at his take on several themes in nineteenth century geometry that were significant for the development of modern model-theoretic semantics. I will focus on three issues in which a central semantic idea, the idea of reinterpreting non-logical terms, gradually came to play a substantial role: the introduction of elements at infinity in projective geometry; the study of transfer principles, especially (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The place of probability in Hilbert’s axiomatization of physics, ca. 1900–1928.Lukas M. Verburgt - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 53:28-44.
    Although it has become a common place to refer to the ׳sixth problem׳ of Hilbert׳s (1900) Paris lecture as the starting point for modern axiomatized probability theory, his own views on probability have received comparatively little explicit attention. The central aim of this paper is to provide a detailed account of this topic in light of the central observation that the development of Hilbert׳s project of the axiomatization of physics went hand-in-hand with a redefinition of the status of probability theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What did Frege take Russell to have proved?John Woods - 2019 - Synthese 198 (4):3949-3977.
    In 1902 there arrived in Jena a letter from Russell laying out a proof that shattered Frege’s confidence in logicism, which is widely taken to be the doctrine according to which every truth of arithmetic is re-expressible without relevant loss as a provable truth about a purely logical object. Frege was persuaded that Russell had exposed a pathology in logicism, which faced him with the task of examining its symptoms, diagnosing its cause, assessing its seriousness, arriving at a treatment option, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations