Switch to: References

Add citations

You must login to add citations.
  1. A Step Towards Absolute Versions of Metamathematical Results.Balthasar Grabmayr - 2024 - Journal of Philosophical Logic 53 (1):247-291.
    There is a well-known gap between metamathematical theorems and their philosophical interpretations. Take Tarski’s Theorem. According to its prevalent interpretation, the collection of all arithmetical truths is not arithmetically definable. However, the underlying metamathematical theorem merely establishes the arithmetical undefinability of a set of specific Gödel codes of certain artefactual entities, such as infix strings, which are true in the standard model. That is, as opposed to its philosophical reading, the metamathematical theorem is formulated (and proved) relative to a specific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Varieties of Self-Reference in Metamathematics.Balthasar Grabmayr, Volker Halbach & Lingyuan Ye - 2023 - Journal of Philosophical Logic 52 (4):1005-1052.
    This paper investigates the conditions under which diagonal sentences can be taken to constitute paradigmatic cases of self-reference. We put forward well-motivated constraints on the diagonal operator and the coding apparatus which separate paradigmatic self-referential sentences, for instance obtained via Gödel’s diagonalization method, from accidental diagonal sentences. In particular, we show that these constraints successfully exclude refutable Henkin sentences, as constructed by Kreisel.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On a certain fallacy concerning I-am-unprovable sentences.Kaave Lajevardi & Saeed Salehi - manuscript
    We demonstrate that, in itself and in the absence of extra premises, the following argument scheme is fallacious: The sentence A says about itself that it has a property F, and A does in fact have the property F; therefore A is true. We then examine an argument of this form in the informal introduction of Gödel’s classic (1931) and examine some auxiliary premises which might have been at work in that context. Philosophically significant as it may be, that particular (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gödel’s Theorem and Direct Self-Reference.Saul A. Kripke - 2023 - Review of Symbolic Logic 16 (2):650-654.
    In his paper on the incompleteness theorems, Gödel seemed to say that a direct way of constructing a formula that says of itself that it is unprovable might involve a faulty circularity. In this note, it is proved that ‘direct’ self-reference can actually be used to prove his result.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reference in arithmetic.Lavinia Picollo - 2018 - Review of Symbolic Logic 11 (3):573-603.
    Self-reference has played a prominent role in the development of metamathematics in the past century, starting with Gödel’s first incompleteness theorem. Given the nature of this and other results in the area, the informal understanding of self-reference in arithmetic has sufficed so far. Recently, however, it has been argued that for other related issues in metamathematics and philosophical logic a precise notion of self-reference and, more generally, reference is actually required. These notions have been so far elusive and are surrounded (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Non‐Classical Knowledge.Ethan Jerzak - 2017 - Philosophy and Phenomenological Research 98 (1):190-220.
    The Knower paradox purports to place surprising a priori limitations on what we can know. According to orthodoxy, it shows that we need to abandon one of three plausible and widely-held ideas: that knowledge is factive, that we can know that knowledge is factive, and that we can use logical/mathematical reasoning to extend our knowledge via very weak single-premise closure principles. I argue that classical logic, not any of these epistemic principles, is the culprit. I develop a consistent theory validating (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Self-Reference Upfront: A Study of Self-Referential Gödel Numberings.Balthasar Grabmayr & Albert Visser - 2023 - Review of Symbolic Logic 16 (2):385-424.
    In this paper we examine various requirements on the formalisation choices under which self-reference can be adequately formalised in arithmetic. In particular, we study self-referential numberings, which immediately provide a strong notion of self-reference even for expressively weak languages. The results of this paper suggest that the question whether truly self-referential reasoning can be formalised in arithmetic is more sensitive to the underlying coding apparatus than usually believed. As a case study, we show how this sensitivity affects the formal study (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the Depth of Gödel’s Incompleteness Theorems.Yong Cheng - forthcoming - Philosophia Mathematica.
    ABSTRACT We use Gödel’s incompleteness theorems as a case study for investigating mathematical depth. We examine the philosophical question of what the depth of Gödel’s incompleteness theorems consists in. We focus on the methodological study of the depth of Gödel’s incompleteness theorems, and propose three criteria to account for the depth of the incompleteness theorems: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of Gödel’s incompleteness theorems.
    Download  
     
    Export citation  
     
    Bookmark  
  • Incompleteness Via Paradox and Completeness.Walter Dean - 2020 - Review of Symbolic Logic 13 (3):541-592.
    This paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Unified Theory of Truth and Paradox.Lorenzo Rossi - 2019 - Review of Symbolic Logic 12 (2):209-254.
    The sentences employed in semantic paradoxes display a wide range of semantic behaviours. However, the main theories of truth currently available either fail to provide a theory of paradox altogether, or can only account for some paradoxical phenomena by resorting to multiple interpretations of the language. In this paper, I explore the wide range of semantic behaviours displayed by paradoxical sentences, and I develop a unified theory of truth and paradox, that is a theory of truth that also provides a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • HYPER-REF: A General Model of Reference for First-Order Logic and First-Order Arithmetic.Pablo Rivas-Robledo - 2022 - Kriterion – Journal of Philosophy 36 (2):179-205.
    In this article I present HYPER-REF, a model to determine the referent of any given expression in First-Order Logic. I also explain how this model can be used to determine the referent of a first-order theory such as First-Order Arithmetic. By reference or referent I mean the non-empty set of objects that the syntactical terms of a well-formed formula pick out given a particular interpretation of the language. To do so, I will first draw on previous work to make explicit (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reference and Truth.Lavinia Picollo - 2020 - Journal of Philosophical Logic 49 (3):439-474.
    I apply the notions of alethic reference introduced in previous work in the construction of several classical semantic truth theories. Furthermore, I provide proof-theoretic versions of those notions and use them to formulate axiomatic disquotational truth systems over classical logic. Some of these systems are shown to be sound, proof-theoretically strong, and compare well to the most renowned systems in the literature.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Alethic Reference.Lavinia Picollo - 2020 - Journal of Philosophical Logic 49 (3):417-438.
    I put forward precise and appealing notions of reference, self-reference, and well-foundedness for sentences of the language of first-order Peano arithmetic extended with a truth predicate. These notions are intended to play a central role in the study of the reference patterns that underlie expressions leading to semantic paradox and, thus, in the construction of philosophically well-motivated semantic theories of truth.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Henkin sentences and local reflection principles for Rosser provability.Taishi Kurahashi - 2016 - Annals of Pure and Applied Logic 167 (2):73-94.
    Download  
     
    Export citation  
     
    Bookmark   6 citations