Order:
See also
Saeed Salehi
University of Tabriz
  1.  60
    On the Arithmetical Truth of Self‐Referential Sentences.Kaave Lajevardi & Saeed Salehi - 2019 - Theoria 85 (1):8-17.
    We take an argument of Gödel's from his ground‐breaking 1931 paper, generalize it, and examine its validity. The argument in question is this: "the sentence G says about itself that it is not provable, and G is indeed not provable; therefore, G is true".
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  2.  8
    Decidable Formulas Of Intuitionistic Primitive Recursive Arithmetic.Saeed Salehi - 2002 - Reports on Mathematical Logic 36 (1):55-61.
    By formalizing some classical facts about provably total functions of intuitionistic primitive recursive arithmetic (iPRA), we prove that the set of decidable formulas of iPRA and of iΣ1+ (intuitionistic Σ1-induction in the language of PRA) coincides with the set of its provably ∆1-formulas and coincides with the set of its provably atomic formulas. By the same methods, we shall give another proof of a theorem of Marković and De Jongh: the decidable formulas of HA are its provably ∆1-formulas.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  35
    There May Be Many Arithmetical Gödel Sentences.Kaave Lajevardi & Saeed Salehi - forthcoming - Philosophia Mathematica.
    We argue that, under the usual assumptions for sufficiently strong arithmetical theories that are subject to Gödel’s First Incompleteness Theorem, one cannot, without impropriety, talk about *the* Gödel sentence of the theory. The reason is that, without violating the requirements of Gödel’s theorem, there could be a true sentence and a false one each of which is provably equivalent to its own unprovability in the theory if the theory is unsound.
    Download  
     
    Export citation  
     
    Bookmark  
  4.  8
    Diagonal Arguments and Fixed Points.Saeed Salehi - 2017 - Bulletin of the Iranian Mathematical Society 43 (5):1073-1088.
    ‎A universal schema for diagonalization was popularized by N. S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fit more theorems in the universal‎ ‎schema of diagonalization‎, ‎such as Euclid's proof for the infinitude of the primes and new proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5.  10
    Theoremizing Yablo's Paradox.Ahmad Karimi & Saeed Salehi - manuscript
    To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self--reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self--reference. We turn Yablo's paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo's paradox comes in several varieties; and he showed in 2004 that there are other versions that are equally paradoxical. Formalizing these versions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6.  11
    From Intuitionism to Many-Valued Logics Through Kripke Models.Saeed Salehi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & Mohammad Saleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 339-348.
    Intuitionistic Propositional Logic is proved to be an infinitely many valued logic by Gödel (Kurt Gödel collected works (Volume I) Publications 1929–1936, Oxford University Press, pp 222–225, 1932), and it is proved by Jaśkowski (Actes du Congrés International de Philosophie Scientifique, VI. Philosophie des Mathématiques, Actualités Scientifiques et Industrielles 393:58–61, 1936) to be a countably many valued logic. In this paper, we provide alternative proofs for these theorems by using models of Kripke (J Symbol Logic 24(1):1–14, 1959). Gödel’s proof gave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  7.  8
    Kripke Semantics for Fuzzy Logics.Saeed Salehi - 2018 - Soft Computing 22 (3):839–844.
    Kripke frames (and models) provide a suitable semantics for sub-classical logics; for example, intuitionistic logic (of Brouwer and Heyting) axiomatizes the reflexive and transitive Kripke frames (with persistent satisfaction relations), and the basic logic (of Visser) axiomatizes transitive Kripke frames (with persistent satisfaction relations). Here, we investigate whether Kripke frames/models could provide a semantics for fuzzy logics. For each axiom of the basic fuzzy logic, necessary and sufficient conditions are sought for Kripke frames/models which satisfy them. It turns out that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8.  10
    On Rudimentarity, Primitive Recursivity and Representability.Saeed Salehi - 2020 - Reports on Mathematical Logic 55:73–85.
    It is quite well-known from Kurt G¨odel’s (1931) ground-breaking Incompleteness Theorem that rudimentary relations (i.e., those definable by bounded formulae) are primitive recursive, and that primitive recursive functions are representable in sufficiently strong arithmetical theories. It is also known, though perhaps not as well-known as the former one, that some primitive recursive relations are not rudimentary. We present a simple and elementary proof of this fact in the first part of the paper. In the second part, we review some possible (...)
    Download  
     
    Export citation  
     
    Bookmark