Switch to: References

Add citations

You must login to add citations.
  1. Naïve Truth and the Evidential Conditional.Andrea Iacona & Lorenzo Rossi - 2024 - Journal of Philosophical Logic 53 (2):559-584.
    This paper develops the idea that valid arguments are equivalent to true conditionals by combining Kripke’s theory of truth with the evidential account of conditionals offered by Crupi and Iacona. As will be shown, in a first-order language that contains a naïve truth predicate and a suitable conditional, one can define a validity predicate in accordance with the thesis that the inference from a conjunction of premises to a conclusion is valid when the corresponding conditional is true. The validity predicate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The logics of a universal language.Eduardo Alejandro Barrio & Edson Bezerra - 2024 - Asian Journal of Philosophy 3 (1):1-22.
    Semantic paradoxes pose a real threat to logics that attempt to be capable of expressing their own semantic concepts. Particularly, Curry paradoxes seem to show that many solutions must change our intuitive concepts of truth or validity or impose limits on certain inferences that are intuitively valid. In this way, the logic of a universal language would have serious problems. In this paper, we explore a different solution that tries to avoid both limitations as much as possible. Thus, we argue (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Substitutional Validity for Modal Logic.Marco Grossi - 2023 - Notre Dame Journal of Formal Logic 64 (3):291-316.
    In the substitutional framework, validity is truth under all substitutions of the nonlogical vocabulary. I develop a theory where □ is interpreted as substitutional validity. I show how to prove soundness and completeness for common modal calculi using this definition.
    Download  
     
    Export citation  
     
    Bookmark  
  • Classical Determinate Truth I.Kentaro Fujimoto & Volker Halbach - 2024 - Journal of Symbolic Logic 89 (1):218-261.
    We introduce and analyze a new axiomatic theory$\mathsf {CD}$of truth. The primitive truth predicate can be applied to sentences containing the truth predicate. The theory is thoroughly classical in the sense that$\mathsf {CD}$is not only formulated in classical logic, but that the axiomatized notion of truth itself is classical: The truth predicate commutes with all quantifiers and connectives, and thus the theory proves that there are no truth value gaps or gluts. To avoid inconsistency, the instances of the T-schema are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unrestricted quantification and ranges of significance.Thomas Schindler - 2022 - Philosophical Studies 180 (5):1579-1600.
    Call a quantifier ‘unrestricted’ if it ranges over absolutely all objects. Arguably, unrestricted quantification is often presupposed in philosophical inquiry. However, developing a semantic theory that vindicates unrestricted quantification proves rather difficult, at least as long as we formulate our semantic theory within a classical first-order language. It has been argued that using a type theory as framework for our semantic theory provides a resolution of this problem, at least if a broadly Fregean interpretation of type theory is assumed. However, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logical Combinatorialism.Andrew Bacon - 2020 - Philosophical Review 129 (4):537-589.
    In explaining the notion of a fundamental property or relation, metaphysicians will often draw an analogy with languages. The fundamental properties and relations stand to reality as the primitive predicates and relations stand to a language: the smallest set of vocabulary God would need in order to write the “book of the world.” This paper attempts to make good on this metaphor. To that end, a modality is introduced that, put informally, stands to propositions as logical truth stands to sentences. (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Formal Notes on the Substitutional Analysis of Logical Consequence.Volker Halbach - 2020 - Notre Dame Journal of Formal Logic 61 (2):317-339.
    Logical consequence in first-order predicate logic is defined substitutionally in set theory augmented with a primitive satisfaction predicate: an argument is defined to be logically valid if and only if there is no substitution instance with true premises and a false conclusion. Substitution instances are permitted to contain parameters. Variants of this definition of logical consequence are given: logical validity can be defined with or without identity as a logical constant, and quantifiers can be relativized in substitution instances or not. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Quine’s Substitutional Definition of Logical Truth and the Philosophical Significance of the Löwenheim-Hilbert-Bernays Theorem.Henri Wagner - 2018 - History and Philosophy of Logic 40 (2):182-199.
    The Löwenheim-Hilbert-Bernays theorem states that, for an arithmetical first-order language L, if S is a satisfiable schema, then substitution of open sentences of L for the predicate letters of S...
    Download  
     
    Export citation  
     
    Bookmark   2 citations