Switch to: References

Add citations

You must login to add citations.
  1. Recognizable sets and Woodin cardinals: computation beyond the constructible universe.Merlin Carl, Philipp Schlicht & Philip Welch - 2018 - Annals of Pure and Applied Logic 169 (4):312-332.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Typicality à la Russell in Set Theory.Athanassios Tzouvaras - 2022 - Notre Dame Journal of Formal Logic 63 (2).
    We adjust the notion of typicality originated with Russell, which was introduced and studied in a previous paper for general first-order structures, to make it expressible in the language of set theory. The adopted definition of the class ${\rm NT}$ of nontypical sets comes out as a natural strengthening of Russell's initial definition, which employs properties of small (minority) extensions, when the latter are restricted to the various levels $V_\zeta$ of $V$. This strengthening leads to defining ${\rm NT}$ as the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The exact strength of the class forcing theorem.Victoria Gitman, Joel David Hamkins, Peter Holy, Philipp Schlicht & Kameryn J. Williams - 2020 - Journal of Symbolic Logic 85 (3):869-905.
    The class forcing theorem, which asserts that every class forcing notion ${\mathbb {P}}$ admits a forcing relation $\Vdash _{\mathbb {P}}$, that is, a relation satisfying the forcing relation recursion—it follows that statements true in the corresponding forcing extensions are forced and forced statements are true—is equivalent over Gödel–Bernays set theory $\text {GBC}$ to the principle of elementary transfinite recursion $\text {ETR}_{\text {Ord}}$ for class recursions of length $\text {Ord}$. It is also equivalent to the existence of truth predicates for the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ehrenfeucht’s Lemma in Set Theory.Gunter Fuchs, Victoria Gitman & Joel David Hamkins - 2018 - Notre Dame Journal of Formal Logic 59 (3):355-370.
    Ehrenfeucht’s lemma asserts that whenever one element of a model of Peano arithmetic is definable from another, they satisfy different types. We consider here the analogue of Ehrenfeucht’s lemma for models of set theory. The original argument applies directly to the ordinal-definable elements of any model of set theory, and, in particular, Ehrenfeucht’s lemma holds fully for models of set theory satisfying V=HOD. We show that the lemma fails in the forcing extension of the universe by adding a Cohen real. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations