Typicality à la Russell in Set Theory

Notre Dame Journal of Formal Logic 63 (2) (2022)
  Copy   BIBTEX

Abstract

We adjust the notion of typicality originated with Russell, which was introduced and studied in a previous paper for general first-order structures, to make it expressible in the language of set theory. The adopted definition of the class ${\rm NT}$ of nontypical sets comes out as a natural strengthening of Russell's initial definition, which employs properties of small (minority) extensions, when the latter are restricted to the various levels $V_\zeta$ of $V$. This strengthening leads to defining ${\rm NT}$ as the class of sets that belong to some countable ordinal definable set. It follows that ${\rm OD}\subseteq {\rm NT}$ and hence ${\rm HOD}\subseteq {\rm HNT}$. It is proved that the class ${\rm HNT}$ of hereditarily nontypical sets is an inner model of ${\rm ZF}$. Moreover the (relative) consistency of $V\neq {\rm NT}$ is established, by showing that in many forcing extensions $M[G]$ the generic set $G$ is a typical element of $M[G]$, a fact which is fully in accord with the intuitive meaning of typicality. In particular it is consistent that there exist continuum many typical reals. In addition it follows from a result of Kanovei and Lyubetsky that ${\rm HOD}\neq {\rm HNT}$ is also relatively consistent. In particular it is consistent that ${\cal P}(\omega)\cap {\rm OD}\subsetneq{\cal P}(\omega)\cap {\rm NT}$. However many questions remain open, among them the consistency of ${\rm HOD}\neq {\rm HNT}\neq V$, ${\rm HOD}={\rm HNT}\neq V$ and ${\rm HOD}\neq {\rm HNT}= V$.

Author's Profile

Athanassios Tzouvaras
Aristotle University of Thessaloniki (PhD)

Analytics

Added to PP
2022-06-10

Downloads
220 (#91,616)

6 months
114 (#55,432)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?