Switch to: References

Add citations

You must login to add citations.
  1. Iteratively Changing the Heights of Automorphism Towers.Gunter Fuchs & Philipp Lücke - 2012 - Notre Dame Journal of Formal Logic 53 (2):155-174.
    We extend the results of Hamkins and Thomas concerning the malleability of automorphism tower heights of groups by forcing. We show that any reasonable sequence of ordinals can be realized as the automorphism tower heights of a certain group in consecutive forcing extensions or ground models, as desired. For example, it is possible to increase the height of the automorphism tower by passing to a forcing extension, then increase it further by passing to a ground model, and then decrease it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Degrees of rigidity for Souslin trees.Gunter Fuchs & Joel David Hamkins - 2009 - Journal of Symbolic Logic 74 (2):423-454.
    We investigate various strong notions of rigidity for Souslin trees, separating them under ♢ into a hierarchy. Applying our methods to the automorphism tower problem in group theory, we show under ♢ that there is a group whose automorphism tower is highly malleable by forcing.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Changing the Heights of Automorphism Towers by Forcing with Souslin Trees over L.Gunter Fuchs & Joel David Hamkins - 2008 - Journal of Symbolic Logic 73 (2):614 - 633.
    We prove that there are groups in the constructible universe whose automorphism towers are highly malleable by forcing. This is a consequence of the fact that, under a suitable diamond hypothesis, there are sufficiently many highly rigid non-isomorphic Souslin trees whose isomorphism relation can be precisely controlled by forcing.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Closed maximality principles: implications, separations and combinations.Gunter Fuchs - 2008 - Journal of Symbolic Logic 73 (1):276-308.
    l investigate versions of the Maximality Principles for the classes of forcings which are <κ-closed. <κ-directed-closed, or of the form Col (κ. <Λ). These principles come in many variants, depending on the parameters which are allowed. I shall write MPΓ(A) for the maximality principle for forcings in Γ, with parameters from A. The main results of this paper are: • The principles have many consequences, such as <κ-closed-generic $\Sigma _{2}^{1}(H_{\kappa})$ absoluteness, and imply. e.g., that ◇κ holds. I give an application (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations