Switch to: References

Add citations

You must login to add citations.
  1. Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • The modal logic of set-theoretic potentialism and the potentialist maximality principles.Joel David Hamkins & Øystein Linnebo - 2022 - Review of Symbolic Logic 15 (1):1-35.
    We analyze the precise modal commitments of several natural varieties of set-theoretic potentialism, using tools we develop for a general model-theoretic account of potentialism, building on those of Hamkins, Leibman and Löwe [14], including the use of buttons, switches, dials and ratchets. Among the potentialist conceptions we consider are: rank potentialism, Grothendieck–Zermelo potentialism, transitive-set potentialism, forcing potentialism, countable-transitive-model potentialism, countable-model potentialism, and others. In each case, we identify lower bounds for the modal validities, which are generally either S4.2 or S4.3, (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Indivisible sets and well‐founded orientations of the Rado graph.Nathanael L. Ackerman & Will Brian - 2019 - Mathematical Logic Quarterly 65 (1):46-56.
    Every set can been thought of as a directed graph whose edge relation is ∈. We show that many natural examples of directed graphs of this kind are indivisible: for every infinite κ, for every indecomposable λ, and every countable model of set theory. All of the countable digraphs we consider are orientations of the countable random graph. In this way we find indivisible well‐founded orientations of the random graph that are distinct up to isomorphism, and ℵ1 that are distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rank-initial embeddings of non-standard models of set theory.Paul Kindvall Gorbow - 2020 - Archive for Mathematical Logic 59 (5-6):517-563.
    A theoretical development is carried to establish fundamental results about rank-initial embeddings and automorphisms of countable non-standard models of set theory, with a keen eye for their sets of fixed points. These results are then combined into a “geometric technique” used to prove several results about countable non-standard models of set theory. In particular, back-and-forth constructions are carried out to establish various generalizations and refinements of Friedman’s theorem on the existence of rank-initial embeddings between countable non-standard models of the fragment (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Minimum models of second-order set theories.Kameryn J. Williams - 2019 - Journal of Symbolic Logic 84 (2):589-620.
    In this article I investigate the phenomenon of minimum and minimal models of second-order set theories, focusing on Kelley–Morse set theory KM, Gödel–Bernays set theory GB, and GB augmented with the principle of Elementary Transfinite Recursion. The main results are the following. (1) A countable model of ZFC has a minimum GBC-realization if and only if it admits a parametrically definable global well order. (2) Countable models of GBC admit minimal extensions with the same sets. (3) There is no minimum (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Initial self-embeddings of models of set theory.Ali Enayat & Zachiri Mckenzie - 2021 - Journal of Symbolic Logic 86 (4):1584-1611.
    By a classical theorem of Harvey Friedman, every countable nonstandard model $\mathcal {M}$ of a sufficiently strong fragment of ZF has a proper rank-initial self-embedding j, i.e., j is a self-embedding of $\mathcal {M}$ such that $j[\mathcal {M}]\subsetneq \mathcal {M}$, and the ordinal rank of each member of $j[\mathcal {M}]$ is less than the ordinal rank of each element of $\mathcal {M}\setminus j[\mathcal {M}]$. Here, we investigate the larger family of proper initial-embeddings j of models $\mathcal {M}$ of fragments of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Incomparable ω 1 ‐like models of set theory.Gunter Fuchs, Victoria Gitman & Joel David Hamkins - 2017 - Mathematical Logic Quarterly 63 (1-2):66-76.
    We show that the analogues of the embedding theorems of [3], proved for the countable models of set theory, do not hold when extended to the uncountable realm of ω1‐like models of set theory. Specifically, under the ⋄ hypothesis and suitable consistency assumptions, we show that there is a family of many ω1‐like models of, all with the same ordinals, that are pairwise incomparable under embeddability; there can be a transitive ω1‐like model of that does not embed into its own (...)
    Download  
     
    Export citation  
     
    Bookmark