- Indestructible strong compactness and level by level inequivalence.Arthur W. Apter - 2013 - Mathematical Logic Quarterly 59 (4-5):371-377.details
|
|
Failure of GCH and the level by level equivalence between strong compactness and supercompactness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (6):587.details
|
|
An L-like model containing very large cardinals.Arthur W. Apter & James Cummings - 2008 - Archive for Mathematical Logic 47 (1):65-78.details
|
|
Indestructible strong compactness but not supercompactness.Arthur W. Apter, Moti Gitik & Grigor Sargsyan - 2012 - Annals of Pure and Applied Logic 163 (9):1237-1242.details
|
|
A remark on the tree property in a choiceless context.Arthur W. Apter - 2011 - Archive for Mathematical Logic 50 (5-6):585-590.details
|
|
Supercompactness and Measurable Limits of Strong Cardinals.Arthur W. Apter - 2001 - Journal of Symbolic Logic 66 (2):629-639.details
|
|
Indestructibility and the linearity of the Mitchell ordering.Arthur W. Apter - 2024 - Archive for Mathematical Logic 63 (3):473-482.details
|
|
More on HOD-supercompactness.Arthur W. Apter, Shoshana Friedman & Gunter Fuchs - 2021 - Annals of Pure and Applied Logic 172 (3):102901.details
|
|
Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.details
|
|
Indestructibility, instances of strong compactness, and level by level inequivalence.Arthur W. Apter - 2010 - Archive for Mathematical Logic 49 (7-8):725-741.details
|
|
Accessing the switchboard via set forcing.Shoshana Friedman - 2012 - Mathematical Logic Quarterly 58 (4-5):303-306.details
|
|
Unfoldable cardinals and the GCH.Joel Hamkins - 2001 - Journal of Symbolic Logic 66 (3):1186-1198.details
|
|
Some structural results concerning supercompact cardinals.Arthur Apter - 2001 - Journal of Symbolic Logic 66 (4):1919-1927.details
|
|
Inaccessible Cardinals, Failures of GCH, and Level-by-Level Equivalence.Arthur W. Apter - 2014 - Notre Dame Journal of Formal Logic 55 (4):431-444.details
|
|
Supercompactness and measurable limits of strong cardinals II: Applications to level by level equivalence.Arthur W. Apter - 2006 - Mathematical Logic Quarterly 52 (5):457-463.details
|
|
The lottery preparation.Joel David Hamkins - 2000 - Annals of Pure and Applied Logic 101 (2-3):103-146.details
|
|
An equiconsistency for universal indestructibility.Arthur W. Apter & Grigor Sargsyan - 2010 - Journal of Symbolic Logic 75 (1):314-322.details
|
|
A universal indestructibility theorem compatible with level by level equivalence.Arthur W. Apter - 2015 - Archive for Mathematical Logic 54 (3-4):463-470.details
|
|
Indestructibility, measurability, and degrees of supercompactness.Arthur W. Apter - 2012 - Mathematical Logic Quarterly 58 (1):75-82.details
|
|
Universal indestructibility for degrees of supercompactness and strongly compact cardinals.Arthur W. Apter & Grigor Sargsyan - 2008 - Archive for Mathematical Logic 47 (2):133-142.details
|
|
Indestructibility when the first two measurable cardinals are strongly compact.Arthur W. Apter - 2022 - Journal of Symbolic Logic 87 (1):214-227.details
|
|
Diamond, square, and level by level equivalence.Arthur W. Apter - 2005 - Archive for Mathematical Logic 44 (3):387-395.details
|
|
Aspects of strong compactness, measurability, and indestructibility.Arthur W. Apter - 2002 - Archive for Mathematical Logic 41 (8):705-719.details
|
|
Coding into HOD via normal measures with some applications.Arthur W. Apter & Shoshana Friedman - 2011 - Mathematical Logic Quarterly 57 (4):366-372.details
|
|
Identity crises and strong compactness III: Woodin cardinals. [REVIEW]Arthur W. Apter & Grigor Sargsyan - 2006 - Archive for Mathematical Logic 45 (3):307-322.details
|
|
Some remarks on indestructibility and Hamkins? lottery preparation.Arthur W. Apter - 2003 - Archive for Mathematical Logic 42 (8):717-735.details
|
|
Tallness and level by level equivalence and inequivalence.Arthur W. Apter - 2010 - Mathematical Logic Quarterly 56 (1):4-12.details
|
|
Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.details
|
|
Characterizing strong compactness via strongness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (4):375.details
|
|
Indestructibility and stationary reflection.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):228-236.details
|
|
Reducing the consistency strength of an indestructibility theorem.Arthur W. Apter - 2008 - Mathematical Logic Quarterly 54 (3):288-293.details
|
|
Precisely controlling level by level behavior.Arthur W. Apter - 2017 - Mathematical Logic Quarterly 63 (1-2):77-84.details
|
|
Strong Compactness, Square, Gch, and Woodin Cardinals.Arthur W. Apter - 2024 - Journal of Symbolic Logic 89 (3):1180-1188.details
|
|
Indestructibility and level by level equivalence and inequivalence.Arthur W. Apter - 2007 - Mathematical Logic Quarterly 53 (1):78-85.details
|
|
Failures of SCH and Level by Level Equivalence.Arthur W. Apter - 2006 - Archive for Mathematical Logic 45 (7):831-838.details
|
|
Large cardinals and definable well-orders on the universe.Andrew D. Brooke-Taylor - 2009 - Journal of Symbolic Logic 74 (2):641-654.details
|
|
Indestructibility and measurable cardinals with few and many measures.Arthur W. Apter - 2008 - Archive for Mathematical Logic 47 (2):101-110.details
|
|
On the consistency strength of level by level inequivalence.Arthur W. Apter - 2017 - Archive for Mathematical Logic 56 (7-8):715-723.details
|
|
The least strongly compact can be the least strong and indestructible.Arthur W. Apter - 2006 - Annals of Pure and Applied Logic 144 (1-3):33-42.details
|
|
Level by level equivalence and strong compactness.Arthur W. Apter - 2004 - Mathematical Logic Quarterly 50 (1):51.details
|
|
Indestructibility and destructible measurable cardinals.Arthur W. Apter - 2016 - Archive for Mathematical Logic 55 (1-2):3-18.details
|
|