Switch to: References

Add citations

You must login to add citations.
  1. Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.
    Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Generic embeddings associated to an indestructibly weakly compact cardinal.Gunter Fuchs - 2010 - Annals of Pure and Applied Logic 162 (1):89-105.
    I use generic embeddings induced by generic normal measures on that can be forced to exist if κ is an indestructibly weakly compact cardinal. These embeddings can be applied in order to obtain the forcing axioms in forcing extensions. This has consequences in : The Singular Cardinal Hypothesis holds above κ, and κ has a useful Jónsson-like property. This in turn implies that the countable tower works much like it does when κ is a Woodin limit of Woodin cardinals. One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Consistency Strength of Two Choiceless Cardinal Patterns.Arthur W. Apter - 1999 - Notre Dame Journal of Formal Logic 40 (3):341-345.
    Using work of Devlin and Schindler in conjunction with work on Prikry forcing in a choiceless context done by the author, we show that two choiceless cardinal patterns have consistency strength of at least one Woodin cardinal.
    Download  
     
    Export citation  
     
    Bookmark  
  • The least strongly compact can be the least strong and indestructible.Arthur W. Apter - 2006 - Annals of Pure and Applied Logic 144 (1-3):33-42.
    We construct two models in which the least strongly compact cardinal κ is also the least strong cardinal. In each of these models, κ satisfies indestructibility properties for both its strong compactness and strongness.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On a problem of Foreman and Magidor.Arthur W. Apter - 2005 - Archive for Mathematical Logic 44 (4):493-498.
    A question of Foreman and Magidor asks if it is consistent for every sequence of stationary subsets of the ℵ n ’s for 1≤n<ω to be mutually stationary. We get a positive answer to this question in the context of the negation of the Axiom of Choice. We also indicate how a positive answer to a generalized version of this question in a choiceless context may be obtained.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Indestructibility, measurability, and degrees of supercompactness.Arthur W. Apter - 2012 - Mathematical Logic Quarterly 58 (1):75-82.
    Suppose that κ is indestructibly supercompact and there is a measurable cardinal λ > κ. It then follows that A1 = {δ < κ∣δ is measurable, δ is not a limit of measurable cardinals, and δ is not δ+ supercompact} is unbounded in κ. If in addition λ is 2λ supercompact, then A2 = {δ < κ∣δ is measurable, δ is not a limit of measurable cardinals, and δ is δ+ supercompact} is unbounded in κ as well. The large cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The envelope of a pointclass under a local determinacy hypothesis.Trevor M. Wilson - 2015 - Annals of Pure and Applied Logic 166 (10):991-1018.
    Download  
     
    Export citation  
     
    Bookmark   2 citations