Switch to: References

Add citations

You must login to add citations.
  1. Enumeration 1-Genericity in the Local Enumeration Degrees. [REVIEW]Liliana Badillo, Charles M. Harris & Mariya I. Soskova - 2018 - Notre Dame Journal of Formal Logic 59 (4):461-489.
    We discuss a notion of forcing that characterizes enumeration 1-genericity, and we investigate the immunity, lowness, and quasiminimality properties of enumeration 1-generic sets and their degrees. We construct an enumeration operator Δ such that, for any A, the set ΔA is enumeration 1-generic and has the same jump complexity as A. We deduce from this and other recent results from the literature that not only does every degree a bound an enumeration 1-generic degree b such that a'=b', but also that, (...))
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Avoiding uniformity in the Δ 2 0 enumeration degrees.Liliana Badillo & Charles M. Harris - 2014 - Annals of Pure and Applied Logic 165 (9):1355-1379.
    Defining a class of sets to be uniform Δ02 if it is derived from a binary {0,1}{0,1}-valued function f≤TKf≤TK, we show that, for any C⊆DeC⊆De induced by such a class, there exists a high Δ02 degree c which is incomparable with every degree b ϵ Ce \ {0e, 0'e}. We show how this result can be applied to quite general subclasses of the Ershov Hierarchy and we also prove, as a direct corollary, that every nonzero low degree caps with both (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Density of the cototal enumeration degrees.Joseph S. Miller & Mariya I. Soskova - 2018 - Annals of Pure and Applied Logic 169 (5):450-462.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the jump classes of noncuppable enumeration degrees.Charles M. Harris - 2011 - Journal of Symbolic Logic 76 (1):177 - 197.
    We prove that for every ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degree b there exists a noncuppable ${\mathrm{\Sigma }}_{2}^{0}$ degree a > 0 e such that b′ ≤ e a′ and a″ ≤ e b″. This allows us to deduce, from results on the high/low jump hierarchy in the local Turing degrees and the jump preserving properties of the standard embedding l: D T → D e , that there exist ${\mathrm{\Sigma }}_{2}^{0}$ noncuppable enumeration degrees at every possible—i.e., above low₁—level of the high/low (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Badness and jump inversion in the enumeration degrees.Charles M. Harris - 2012 - Archive for Mathematical Logic 51 (3-4):373-406.
    This paper continues the investigation into the relationship between good approximations and jump inversion initiated by Griffith. Firstly it is shown that there is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^{0}_{2}}$$\end{document} set A whose enumeration degree a is bad—i.e. such that no set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X \in a}$$\end{document} is good approximable—and whose complement \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{A}}$$\end{document} has lowest possible jump, in other words (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bounded enumeration reducibility and its degree structure.Daniele Marsibilio & Andrea Sorbi - 2012 - Archive for Mathematical Logic 51 (1-2):163-186.
    We study a strong enumeration reducibility, called bounded enumeration reducibility and denoted by ≤be, which is a natural extension of s-reducibility ≤s. We show that ≤s, ≤be, and enumeration reducibility do not coincide on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} –sets, and the structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{\mathcal{D}_{\rm be}}}$$\end{document} of the be-degrees is not elementarily equivalent to the structure of the s-degrees. We show also that the first order theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations