Switch to: References

Citations of:

The Finite and the Infinite in Frege's Grundgesetze der Arithmetik

In Matthias Schirn (ed.), Philosophy of Mathematics Today. Oxford University Press (1998)

Add citations

You must login to add citations.
  1. Identifying Finite Cardinal Abstracts.Sean C. Ebels-Duggan - forthcoming - Philosophical Studies.
    Download  
     
    Export citation  
     
    Bookmark  
  • Cardinality, Counting, and Equinumerosity.Richard Heck - 2000 - Notre Dame Journal of Formal Logic 41 (3):187-209.
    Frege, famously, held that there is a close connection between our concept of cardinal number and the notion of one-one correspondence, a connection enshrined in Hume's Principle. Husserl, and later Parsons, objected that there is no such close connection, that our most primitive conception of cardinality arises from our grasp of the practice of counting. Some empirical work on children's development of a concept of number has sometimes been thought to point in the same direction. I argue, however, that Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Logicism Revisited.Otávio Bueno - 2001 - Principia 5 (1-2):99-124.
    In this paper, I develop a new defense of logicism: one that combines logicism and nominalism. First, I defend the logicist approach from recent criticisms; in particular from the charge that a cruciai principie in the logicist reconstruction of arithmetic, Hume's Principle, is not analytic. In order to do that, I argue, it is crucial to understand the overall logicist approach as a nominalist view. I then indicate a way of extending the nominalist logicist approach beyond arithmetic. Finally, I argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Dedekind's Logicism.José Ferreirós - unknown
    The place of Richard Dedekind in the history of logicism is a controversial matter. The conception of logic incorporated in his work is certainly old-fashioned, in spite of innovative elements that would play an important role in late 19th and early 20th century discussions. Yet his understanding of logic and logicism remains of interest for the light it throws upon the development of modern logic in general, and logicist views of the foundations of mathematics in particular. The paper clarifies Dedekind's (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation