Switch to: References

Add citations

You must login to add citations.
  1. Second-order logic: properties, semantics, and existential commitments.Bob Hale - 2019 - Synthese 196 (7):2643-2669.
    Quine’s most important charge against second-, and more generally, higher-order logic is that it carries massive existential commitments. The force of this charge does not depend upon Quine’s questionable assimilation of second-order logic to set theory. Even if we take second-order variables to range over properties, rather than sets, the charge remains in force, as long as properties are individuated purely extensionally. I argue that if we interpret them as ranging over properties more reasonably construed, in accordance with an abundant (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Predicative Frege Arithmetic and ‘Everyday’ Mathematics.Richard Heck - 2014 - Philosophia Mathematica 22 (3):279-307.
    The primary purpose of this note is to demonstrate that predicative Frege arithmetic naturally interprets certain weak but non-trivial arithmetical theories. It will take almost as long to explain what this means and why it matters as it will to prove the results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Empiricism, Probability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Journal of Applied Logic 12 (3):319–348.
    The topic of this paper is our knowledge of the natural numbers, and in particular, our knowledge of the basic axioms for the natural numbers, namely the Peano axioms. The thesis defended in this paper is that knowledge of these axioms may be gained by recourse to judgements of probability. While considerations of probability have come to the forefront in recent epistemology, it seems safe to say that the thesis defended here is heterodox from the vantage point of traditional philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logicism, Interpretability, and Knowledge of Arithmetic.Sean Walsh - 2014 - Review of Symbolic Logic 7 (1):84-119.
    A crucial part of the contemporary interest in logicism in the philosophy of mathematics resides in its idea that arithmetical knowledge may be based on logical knowledge. Here an implementation of this idea is considered that holds that knowledge of arithmetical principles may be based on two things: (i) knowledge of logical principles and (ii) knowledge that the arithmetical principles are representable in the logical principles. The notions of representation considered here are related to theory-based and structure-based notions of representation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • From numerical concepts to concepts of number.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):623-642.
    Many experiments with infants suggest that they possess quantitative abilities, and many experimentalists believe that these abilities set the stage for later mathematics: natural numbers and arithmetic. However, the connection between these early and later skills is far from obvious. We evaluate two possible routes to mathematics and argue that neither is sufficient: (1) We first sketch what we think is the most likely model for infant abilities in this domain, and we examine proposals for extrapolating the natural number concept (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Abstraction and abstract concepts: On Husserl's philosophy of arithmetic.Gianfranco Soldati - 2004 - In Arkadiusz Chrudzimski & Wolfgang Huemer (eds.), Phenomenology and analysis: essays on Central European philosophy. Lancaster: Ontos. pp. 1--215.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Logic for Frege's Theorem.Richard Heck - 1999 - In Richard G. Heck (ed.), Frege’s Theorem: An Introduction. The Harvard Review of Philosophy.
    It has been known for a few years that no more than Pi-1-1 comprehension is needed for the proof of "Frege's Theorem". One can at least imagine a view that would regard Pi-1-1 comprehension axioms as logical truths but deny that status to any that are more complex—a view that would, in particular, deny that full second-order logic deserves the name. Such a view would serve the purposes of neo-logicists. It is, in fact, no part of my view that, say, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Predicative fragments of Frege arithmetic.Øystein Linnebo - 2004 - Bulletin of Symbolic Logic 10 (2):153-174.
    Frege Arithmetic (FA) is the second-order theory whose sole non-logical axiom is Hume’s Principle, which says that the number of F s is identical to the number of Gs if and only if the F s and the Gs can be one-to-one correlated. According to Frege’s Theorem, FA and some natural definitions imply all of second-order Peano Arithmetic. This paper distinguishes two dimensions of impredicativity involved in FA—one having to do with Hume’s Principle, the other, with the underlying second-order logic—and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • On What Ground Do Thin Objects Exist? In Search of the Cognitive Foundation of Number Concepts.Markus Pantsar - 2023 - Theoria 89 (3):298-313.
    Linnebo in 2018 argues that abstract objects like numbers are “thin” because they are only required to be referents of singular terms in abstraction principles, such as Hume's principle. As the specification of existence claims made by analytic truths (the abstraction principles), their existence does not make any substantial demands of the world; however, as Linnebo notes, there is a potential counter-argument concerning infinite regress against introducing objects this way. Against this, he argues that vicious regress is avoided in the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • How Do We Semantically Individuate Natural Numbers?†.Stefan Buijsman - forthcoming - Philosophia Mathematica.
    ABSTRACT How do non-experts single out numbers for reference? Linnebo has argued that they do so using a criterion of identity based on the ordinal properties of numerals. Neo-logicists, on the other hand, claim that cardinal properties are the basis of individuation, when they invoke Hume’s Principle. I discuss empirical data from cognitive science and linguistics to answer how non-experts individuate numbers better in practice. I use those findings to develop an alternative account that mixes ordinal and cardinal properties to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hale’s argument from transitive counting.Eric Snyder, Richard Samuels & Stewart Shapiro - 2019 - Synthese 198 (3):1905-1933.
    A core commitment of Bob Hale and Crispin Wright’s neologicism is their invocation of Frege’s Constraint—roughly, the requirement that the core empirical applications for a class of numbers be “built directly into” their formal characterization. According to these neologicists, if legitimate, Frege’s Constraint adjudicates in favor of their preferred foundation—Hume’s Principle—and against alternatives, such as the Dedekind–Peano axioms. In this paper, we consider a recent argument for legitimating Frege’s Constraint due to Hale, according to which the primary empirical application of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Entities Without Identity: A Semantical Dilemma.Benjamin C. Jantzen - 2019 - Erkenntnis 84 (2):283-308.
    It has been suggested that puzzles in the interpretation of quantum mechanics motivate consideration of entities that are numerically distinct but do not stand in a relation of identity with themselves or non-identity with others. Quite apart from metaphysical concerns, I argue that talk about such entities is either meaningless or not about such entities. It is meaningless insofar as we attempt to take the foregoing characterization literally. It is meaningful, however, if talk about entities without identity is taken as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Don't throw the baby out with the math water: Why discounting the developmental foundations of early numeracy is premature and unnecessary.Kevin Muldoon, Charlie Lewis & Norman Freeman - 2008 - Behavioral and Brain Sciences 31 (6):663-664.
    We see no grounds for insisting that, because the concept natural number is abstract, its foundations must be innate. It is possible to specify domain general learning processes that feed into more abstract concepts of numerical infinity. By neglecting the messiness of children's slow acquisition of arithmetical concepts, Rips et al. present an idealized, unnecessarily insular, view of number development.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neo-fregeanism naturalized: The role of one-to-one correspondence in numerical cognition.Lieven Decock - 2008 - Behavioral and Brain Sciences 31 (6):648-649.
    Rips et al. argue that the construction of math schemas roughly similar to the Dedekind/Peano axioms may be necessary for arriving at arithmetical skills. However, they neglect the neo-Fregean alternative axiomatization of arithmetic, based on Hume's principle. Frege arithmetic is arguably a more plausible start for a top-down approach in the psychological study of mathematical cognition than Peano arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ramified Frege Arithmetic.Richard G. Heck - 2011 - Journal of Philosophical Logic 40 (6):715-735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.
    According to the species of neo-logicism advanced by Hale and Wright, mathematical knowledge is essentially logical knowledge. Their view is found to be best understood as a set of related though independent theses: (1) neo-fregeanism-a general conception of the relation between language and reality; (2) the method of abstraction-a particular method for introducing concepts into language; (3) the scope of logic-second-order logic is logic. The criticisms of Boolos, Dummett, Field and Quine (amongst others) of these theses are explicated and assessed. (...)
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • (1 other version)Linnebo on reference by abstraction.Bahram Assadian - 2023 - Analytic Philosophy 65 (4):603-615.
    According to Øystein Linnebo's account of abstractionism, abstraction principles, received as Fregean criteria of identity, can be used to reduce facts about singular reference to objects such as directions and numbers to facts that do not involve such objects. In this article, first I show how the resources of Linnebo's metasemantics successfully handle Dummett's challenge against the referentiality of the singular terms formed by abstraction principles. Then, I argue that Linnebo's metasemantic commitments do not provide us with tools for dispelling (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Linnebo on reference by abstraction.Bahram Assadian - 2023 - Analytic Philosophy 2 (4):603-615.
    According to Øystein Linnebo's account of abstractionism, abstraction principles, received as Fregean criteria of identity, can be used to reduce facts about singular reference to objects such as directions and numbers to facts that do not involve such objects. In this article, first I show how the resources of Linnebo's metasemantics successfully handle Dummett's challenge against the referentiality of the singular terms formed by abstraction principles. Then, I argue that Linnebo's metasemantic commitments do not provide us with tools for dispelling (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Building blocks for a cognitive science-led epistemology of arithmetic.Stefan Buijsman - 2021 - Philosophical Studies 179 (5):1-18.
    In recent years philosophers have used results from cognitive science to formulate epistemologies of arithmetic :5–18, 2001). Such epistemologies have, however, been criticised, e.g. by Azzouni, for interpreting the capacities found by cognitive science in an overly numerical way. I offer an alternative framework for the way these psychological processes can be combined, forming the basis for an epistemology for arithmetic. The resulting framework avoids assigning numerical content to the Approximate Number System and Object Tracking System, two systems that have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conteo, cardinalidad y equinumerosidad: motivos para una revisión crítica de las objeciones de Husserl a Frege en "Filosofía de la Aritmética".Luis Alberto Canela Morales - forthcoming - Filosofia Unisinos:1-13.
    En el apartado Freges Versuch, incluido en Filosofía de la aritmética, Husserl abiertamente señala que en los Fundamentos de la aritmética de G. Frege no existe un análisis lógico adecuado del concepto de número en términos de equinumerosidad. Según Husserl, la caracterización de Frege del concepto de número cardinal, en estrecha conexión con la noción de correspondencia uno- a-uno, es errónea. El objetivo principal de este artículo es mostrar que esta interpretación de Husserl sobre la obra de Frege, específicamente en (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Acquiring mathematical concepts: The viability of hypothesis testing.Stefan Buijsman - 2021 - Mind and Language 36 (1):48-61.
    Can concepts be acquired by testing hypotheses about these concepts? Fodor famously argued that this is not possible. Testing the correct hypothesis would require already possessing the concept. I argue that this does not generally hold for mathematical concepts. I discuss specific, empirically motivated, hypotheses for number concepts that can be tested without needing to possess the relevant number concepts. I also argue that one can test hypotheses about the identity conditions of other mathematical concepts, and then fix the application (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are the Natural Numbers Fundamentally Ordinals?Bahram Assadian & Stefan Buijsman - 2018 - Philosophy and Phenomenological Research 99 (3):564-580.
    There are two ways of thinking about the natural numbers: as ordinal numbers or as cardinal numbers. It is, moreover, well-known that the cardinal numbers can be defined in terms of the ordinal numbers. Some philosophies of mathematics have taken this as a reason to hold the ordinal numbers as (metaphysically) fundamental. By discussing structuralism and neo-logicism we argue that one can empirically distinguish between accounts that endorse this fundamentality claim and those that do not. In particular, we argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kant's Conception of Number.Daniel Sutherland - 2017 - Philosophical Review Current Issue 126 (2):147-190.
    Despite the importance of Kant's claims about mathematical cognition for his philosophy as a whole and for subsequent philosophy of mathematics, there is still no consensus on his philosophy of arithmetic, and in particular the role he assigns intuition in it. This inquiry sets aside the role of intuition for the nonce to investigate Kant's conception of natural number. Although Kant himself doesn't distinguish between a cardinal and an ordinal conception of number, some of the properties Kant attributes to number (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Psychology and the A Priori Sciences.Penelope Maddy - 2018 - In Naturalizing Logico-Mathematical Knowledge Approaches from Philosophy, Psychology and Cognitive Science. London: Routldge. pp. 15-29.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Refutation of Frege’s Context Principle?Aaron Barth - 2012 - Thought: A Journal of Philosophy 1 (1):26-35.
    This paper explores the limitations of current empirical approaches to the philosophy of language in light of a recent criticism of Frege's context principle. According to this criticism, the context principle is in conflict with certain features of natural language use and this is held to undermine its application in Foundations of Arithmetic. I argue that this view is mistaken because the features with which the context principle is alleged to be in conflict are irrelevant to the principle's methodological significance (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • In Good Company? On Hume’s Principle and the Assignment of Numbers to Infinite Concepts.Paolo Mancosu - 2015 - Review of Symbolic Logic 8 (2):370-410.
    In a recent article, I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign numerosities to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosities assignments differ from the standard assignment of size provided (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Learning the Natural Numbers as a Child.Stefan Buijsman - 2017 - Noûs 53 (1):3-22.
    How do we get out knowledge of the natural numbers? Various philosophical accounts exist, but there has been comparatively little attention to psychological data on how the learning process actually takes place. I work through the psychological literature on number acquisition with the aim of characterising the acquisition stages in formal terms. In doing so, I argue that we need a combination of current neologicist accounts and accounts such as that of Parsons. In particular, I argue that we learn the (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Wie individuell sind intentionale Einstellungen wirklich?Ralf Stoecker - 2000 - Metaphysica 1:107-119.
    So selbstverständlich es klingt, vom Geist, der Psyche oder auch der Seele eines Menschen zu reden, und so vertraut uns wissenschaftliche Disziplinen sind, die sich philosophisch oder empirisch damit beschäftigen, so schwer fällt es, ein einheitliches Merkmale dafür anzugeben, wann etwas ein psychisches Phänomen ist. Viele der potentiellen Merkmale decken eben nur einen Teil des Spektrums dessen ab, was wir gewöhnlich als psychisch bezeichnen würden, und sind damit bestenfalls hinreichende, aber sicher keine notwendigen Bedingungen des Psychischen. Im Mittelpunkt des folgenden (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Anti- Naturalism: The Role of Non-Empirical Methods in Philosophy.Aaron Barth - 2013 - History and Philosophy of Logic 34 (3):196-206.
    Some naturalistic conceptions of philosophical methodologies interpret the doctrine that philosophy is continuous with science to mean that philosophical investigations must implement empirical methods and must not depart from the experimental results that the scientific application of those methods reveal. In this paper, I argue that while our answers to philosophical questions are certainly constrained by empirical considerations, this does not imply that the methods by which these questions are correctly settled are wholly captured by empirical methods. Many historical cases (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Philosophical Significance of Frege’s Constraint.Andrea Sereni - 2019 - Philosophia Mathematica 27 (2):244–275.
    Foundational projects disagree on whether pure and applied mathematics should be explained together. Proponents of unified accounts like neologicists defend Frege’s Constraint (FC), a principle demanding that an explanation of applicability be provided by mathematical definitions. I reconsider the philosophical import of FC, arguing that usual conceptions are biased by ontological assumptions. I explore more reasonable weaker variants — Moderate and Modest FC — arguing against common opinion that ante rem structuralism (and other) views can meet them. I dispel doubts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hume’s principle: a plea for austerity.Kai Michael Büttner - 2019 - Synthese 198 (4):3759-3781.
    According to Hume’s principle, a sentence of the form ⌜The number of Fs = the number of Gs⌝ is true if and only if the Fs are bijectively correlatable to the Gs. Neo-Fregeans maintain that this principle provides an implicit definition of the notion of cardinal number that vindicates a platonist construal of such numerical equations. Based on a clarification of the explanatory status of Hume’s principle, I will provide an argument in favour of a nominalist construal of numerical equations. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Counting and the ontogenetic origins of exact equality.Rose M. Schneider, Erik Brockbank, Roman Feiman & David Barner - 2022 - Cognition 218 (C):104952.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Dissonances in theories of number understanding.Lance J. Rips, Amber Bloomfield & Jennifer Asmuth - 2008 - Behavioral and Brain Sciences 31 (6):671-687.
    Traditional theories of how children learn the positive integers start from infants' abilities in detecting the quantity of physical objects. Our target article examined this view and found no plausible accounts of such development. Most of our commentators appear to agree that no adequate developmental theory is presently available, but they attempt to hold onto a role for early enumeration. Although some defend the traditional theories, others introduce new basic quantitative abilities, new methods of transformation, or new types of end (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Numerical Abstraction via the Frege Quantifier.G. Aldo Antonelli - 2010 - Notre Dame Journal of Formal Logic 51 (2):161-179.
    This paper presents a formalization of first-order arithmetic characterizing the natural numbers as abstracta of the equinumerosity relation. The formalization turns on the interaction of a nonstandard cardinality quantifier with an abstraction operator assigning objects to predicates. The project draws its philosophical motivation from a nonreductionist conception of logicism, a deflationary view of abstraction, and an approach to formal arithmetic that emphasizes the cardinal properties of the natural numbers over the structural ones.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • To Continue With Continuity.Martin Cooke - 2005 - Metaphysica 6 (2):91-109.
    The metaphysical concept of continuity is important, not least because physical continua are not known to be impossible. While it is standard to model them with a mathematical continuum based upon set-theoretical intuitions, this essay considers, as a contribution to the debate about the adequacy of those intuitions, the neglected intuition that dividing the length of a line by the length of an individual point should yield the line’s cardinality. The algebraic properties of that cardinal number are derived pre-theoretically from (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Abstractionism and Mathematical Singular Reference.Bahram Assadian - 2019 - Philosophia Mathematica 27 (2):177-198.
    ABSTRACT Is it possible to effect singular reference to mathematical objects in the abstractionist framework? I will argue that even if mathematical expressions pass the relevant syntactic and inferential tests to qualify as singular terms, that does not mean that their semantic function is to refer to a particular object. I will defend two arguments leading to this claim: the permutation argument for the referential indeterminacy of mathematical terms, and the argument from the semantic idleness of the terms introduced by (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Double vision: two questions about the neo-Fregean program.John MacFarlane - 2009 - Synthese 170 (3):443-456.
    Much of The Reason’s Proper Study is devoted to defending the claim that simply by stipulating an abstraction principle for the “number-of” functor, we can simultaneously fix a meaning for this functor and acquire epistemic entitlement to the stipulated principle. In this paper, I argue that the semantic and epistemological principles Hale and Wright offer in defense of this claim may be too strong for their purposes. For if these principles are correct, it is hard to see why they do (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Ramified Frege Arithmetic.Richard G. Heck Jr - 2011 - Journal of Philosophical Logic 40 (6):715 - 735.
    Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege's definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Our knowledge of numbers as self-subsistent objects.William Demopoulos - 2005 - Dialectica 59 (2):141–159.
    A feature of Frege's philosophy of arithmetic that has elicited a great deal of attention in the recent secondary literature is his contention that numbers are ‘self‐subsistent’ objects. The considerable interest in this thesis among the contemporary philosophy of mathematics community stands in marked contrast to Kreisel's folk‐lore observation that the central problem in the philosophy of mathematics is not the existence of mathematical objects, but the objectivity of mathematics. Although Frege was undoubtedly concerned with both questions, a goal of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations