Switch to: References

Add citations

You must login to add citations.
  1. Infinitesimals as an issue of neo-Kantian philosophy of science.Thomas Mormann & Mikhail Katz - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science (2):236-280.
    We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. Our (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Ernst Cassirer's transcendental account of mathematical reasoning.Francesca Biagioli - 2020 - Studies in History and Philosophy of Science Part A 79 (C):30-40.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Kant, Neo‐Kantians, and Transcendental Subjectivity.Charlotte Baumann - 2017 - European Journal of Philosophy 25 (3):595-616.
    This article discusses an interpretation of Kant's conception of transcendental subjectivity, which manages to avoid many of the concerns that have been raised by analytic interpreters over this doctrine. It is an interpretation put forward by selected C19 and early C20 neo-Kantian writers. The article starts out by offering a neo-Kantian interpretation of the object as something that is constituted by the categories and that serves as a standard of truth within a theory of judgment. The second part explicates transcendental (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ernst Cassirer's Neo-Kantian Philosophy of Geometry.Jeremy Heis - 2011 - British Journal for the History of Philosophy 19 (4):759 - 794.
    One of the most important philosophical topics in the early twentieth century and a topic that was seminal in the emergence of analytic philosophy was the relationship between Kantian philosophy and modern geometry. This paper discusses how this question was tackled by the Neo-Kantian trained philosopher Ernst Cassirer. Surprisingly, Cassirer does not affirm the theses that contemporary philosophers often associate with Kantian philosophy of mathematics. He does not defend the necessary truth of Euclidean geometry but instead develops a kind of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Ernst Cassirer’s Substanzbegriff und Funktionsbegriff.Jeremy Heis - 2014 - Hopos: The Journal of the International Society for the History of Philosophy of Science 4 (2):241-70.
    Ernst Cassirer’s book Substanzbegriff und Funktionsbegriff is a difficult book for contemporary readers to understand. Its topic, the theory of concept formation, engages with debates and authors that are largely unknown today. And its “historical” style violates the philosophical standards of clarity first propounded by early analytic philosophers. Cassirer, for instance, never says explicitly what he means by “substance-concept” and “function-concept.” In this article, I answer three questions: Why did Cassirer choose to focus on the topic of concept formation? What (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Cassirer's Psychology of Relations: From the Psychology of Mathematics and Natural Science to the Psychology of Culture.Samantha Matherne - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    In spite of Ernst Cassirer’s criticisms of psychologism throughout Substance and Function, in the final chapter he issues a demand for a “psychology of relations” that can do justice to the subjective dimensions of mathematics and natural science. Although these remarks remain somewhat promissory, the fact that this is how Cassirer chooses to conclude Substance and Function recommends it as a topic worthy of serious consideration. In this paper, I argue that in order to work out the details of Cassirer’s (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Volume Introduction – Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy.Scott Edgar - 2018 - Journal for the History of Analytical Philosophy 6 (3):1-10.
    Introduction to the Special Volume, “Method, Science and Mathematics: Neo-Kantianism and Analytic Philosophy,” edited by Scott Edgar and Lydia Patton. At its core, analytic philosophy concerns urgent questions about philosophy’s relation to the formal and empirical sciences, questions about philosophy’s relation to psychology and the social sciences, and ultimately questions about philosophy’s place in a broader cultural landscape. This picture of analytic philosophy shapes this collection’s focus on the history of the philosophy of mathematics, physics, and psychology. The following essays (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Zur mathematischen Wissenschaftsphilosophie des Marburger Neukantianismus.Thomas Mormann - 2018 - In Christian Damböck (ed.), Philosophie und Wissenschaft bei Hermann Cohen. Springer. pp. 101 - 133.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Epistemological Question of the Applicability of Mathematics.Paola Cantù - 2018 - Journal for the History of Analytical Philosophy 6 (3).
    The question of the applicability of mathematics is an epistemological issue that was explicitly raised by Kant, and which has played different roles in the works of neo-Kantian philosophers, before becoming an essential issue in early analytic philosophy. This paper will first distinguish three main issues that are related to the application of mathematics: indispensability arguments that are aimed at justifying mathematics itself; philosophical justifications of the successful application of mathematics to scientific theories; and discussions on the application of real (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dedekind and Cassirer on Mathematical Concept Formation†.Audrey Yap - 2014 - Philosophia Mathematica 25 (3):369-389.
    Dedekind's major work on the foundations of arithmetic employs several techniques that have left him open to charges of psychologism, and through this, to worries about the objectivity of the natural-number concept he defines. While I accept that Dedekind takes the foundation for arithmetic to lie in certain mental powers, I will also argue that, given an appropriate philosophical background, this need not make numbers into subjective mental objects. Even though Dedekind himself did not provide that background, one can nevertheless (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Ernst Cassirer on historical thought and the demarcation problem of epistemology.Francesca Biagioli - 2021 - British Journal for the History of Philosophy 29 (4):652-670.
    Cassirer’s neo-Kantian epistemology has become a classical reference in contemporary history and philosophy of science. However, the historical aspects of his thought are sometimes seen to be in some tension with his defence of a priori elements of knowledge. This paper reconsiders Cassirer’s strategy to address this tension by positing functional dependencies at the core of the notion of objectivity. This requires the epistemologist to account for the determination of the objects of knowledge within given scientific theories, but also for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cassirer’s functionalist account of physical truth: object, measurement and technology.Benedetta Spigola - 2024 - Continental Philosophy Review 57 (3):399-418.
    In this paper I focus on Cassirer’s functionalist theory of truth in order to argue that the Positivistic theory of knowledge fails to explain how it is that physics provides us with truth-evaluable and reliably objective descriptions of the world. This argument is based on Cassirer’s idea that what the Positivistic theory of knowledge normally considers as the “factual” of physics is, in fact, unachievable and falsely conceived. I show that Cassirer’s focus on how measurement is made possible, as well (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the Aufbau, contended that this endeavor (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth and science: Cassirer’s conception of truth and its role in the scientific enterprise.Massimiliano D’Acconti - 2024 - Continental Philosophy Review 57 (3):437-453.
    In this article, I propose an investigation of Ernst Cassirer’s conception of truth, as set out in his inaugural address as rector of Hamburg University, in light of two key concepts of his philosophy, i.e., function and symbolic form. My aim is neither to give an exhaustive exposition of the subject, nor to attempt to elaborate a complete Cassirerian theory of truth. Rather, I want to focus on how the Cassirerian conception of truth can be useful in countering certain contemporary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Constructive Treatment to Elemental Life Forms through Mathematical Philosophy.Susmit Bagchi - 2021 - Philosophies 6 (4):84.
    The quest to understand the natural and the mathematical as well as philosophical principles of dynamics of life forms are ancient in the human history of science. In ancient times, Pythagoras and Plato, and later, Copernicus and Galileo, correctly observed that the grand book of nature is written in the language of mathematics. Platonism, Aristotelian logism, neo-realism, monadism of Leibniz, Hegelian idealism and others have made efforts to understand reasons of existence of life forms in nature and the underlying principles (...)
    Download  
     
    Export citation  
     
    Bookmark