Switch to: References

Add citations

You must login to add citations.
  1. Creating meaningful work in the age of AI: explainable AI, explainability, and why it matters to organizational designers.Kristin Wulff & Hanne Finnestrand - forthcoming - AI and Society:1-14.
    In this paper, we contribute to research on enterprise artificial intelligence (AI), specifically to organizations improving the customer experiences and their internal processes through using the type of AI called machine learning (ML). Many organizations are struggling to get enough value from their AI efforts, and part of this is related to the area of explainability. The need for explainability is especially high in what is called black-box ML models, where decisions are made without anyone understanding how an AI reached (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • AI ageism: a critical roadmap for studying age discrimination and exclusion in digitalized societies.Justyna Stypinska - 2023 - AI and Society 38 (2):665-677.
    In the last few years, we have witnessed a surge in scholarly interest and scientific evidence of how algorithms can produce discriminatory outcomes, especially with regard to gender and race. However, the analysis of fairness and bias in AI, important for the debate of AI for social good, has paid insufficient attention to the category of age and older people. Ageing populations have been largely neglected during the turn to digitality and AI. In this article, the concept of AI ageism (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Exploring the roles of trust and social group preference on the legitimacy of algorithmic decision-making vs. human decision-making for allocating COVID-19 vaccinations.Marco Lünich & Kimon Kieslich - forthcoming - AI and Society:1-19.
    In combating the ongoing global health threat of the COVID-19 pandemic, decision-makers have to take actions based on a multitude of relevant health data with severe potential consequences for the affected patients. Because of their presumed advantages in handling and analyzing vast amounts of data, computer systems of algorithmic decision-making are implemented and substitute humans in decision-making processes. In this study, we focus on a specific application of ADM in contrast to human decision-making, namely the allocation of COVID-19 vaccines to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Does AI Debias Recruitment? Race, Gender, and AI’s “Eradication of Difference”.Eleanor Drage & Kerry Mackereth - 2022 - Philosophy and Technology 35 (4):1-25.
    In this paper, we analyze two key claims offered by recruitment AI companies in relation to the development and deployment of AI-powered HR tools: (1) recruitment AI can objectively assess candidates by removing gender and race from their systems, and (2) this removal of gender and race will make recruitment fairer, help customers attain their DEI goals, and lay the foundations for a truly meritocratic culture to thrive within an organization. We argue that these claims are misleading for four reasons: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Artificial intelligence and work: a critical review of recent research from the social sciences.Jean-Philippe Deranty & Thomas Corbin - forthcoming - AI and Society:1-17.
    This review seeks to present a comprehensive picture of recent discussions in the social sciences of the anticipated impact of AI on the world of work. Issues covered include: technological unemployment, algorithmic management, platform work and the politics of AI work. The review identifies the major disciplinary and methodological perspectives on AI’s impact on work, and the obstacles they face in making predictions. Two parameters influencing the development and deployment of AI in the economy are highlighted: the capitalist imperative and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • AI employment decision-making: integrating the equal opportunity merit principle and explainable AI.Gary K. Y. Chan - forthcoming - AI and Society:1-12.
    Artificial intelligence tools used in employment decision-making cut across the multiple stages of job advertisements, shortlisting, interviews and hiring, and actual and potential bias can arise in each of these stages. One major challenge is to mitigate AI bias and promote fairness in opaque AI systems. This paper argues that the equal opportunity merit principle is an ethical approach for fair AI employment decision-making. Further, explainable AI can mitigate the opacity problem by placing greater emphasis on enhancing the understanding of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Artificial Intelligence, Discrimination, Fairness, and Other Moral Concerns.Re’em Segev - 2024 - Minds and Machines 34 (4):1-22.
    Should the input data of artificial intelligence (AI) systems include factors such as race or sex when these factors may be indicative of morally significant facts? More importantly, is it wrong to rely on the output of AI tools whose input includes factors such as race or sex? And is it wrong to rely on the output of AI systems when it is correlated with factors such as race or sex (whether or not its input includes such factors)? The answers (...)
    Download  
     
    Export citation  
     
    Bookmark