Switch to: References

Add citations

You must login to add citations.
  1. Modal Languages and Bounded Fragments of Predicate Logic.Hajnal Andréka, István Németi & Johan van Benthem - 1998 - Journal of Philosophical Logic 27 (3):217 - 274.
    What precisely are fragments of classical first-order logic showing “modal” behaviour? Perhaps the most influential answer is that of Gabbay 1981, which identifies them with so-called “finite-variable fragments”, using only some fixed finite number of variables (free or bound). This view-point has been endorsed by many authors (cf. van Benthem 1991). We will investigate these fragments, and find that, illuminating and interesting though they are, they lack the required nice behaviour in our sense. (Several new negative results support this claim.) (...)
    Download  
     
    Export citation  
     
    Bookmark   99 citations  
  • Algebraic Logic, Where Does It Stand Today?Tarek Sayed Ahmed - 2005 - Bulletin of Symbolic Logic 11 (3):465-516.
    This is a survey article on algebraic logic. It gives a historical background leading up to a modern perspective. Central problems in algebraic logic (like the representation problem) are discussed in connection to other branches of logic, like modal logic, proof theory, model-theoretic forcing, finite combinatorics, and Gödel’s incompleteness results. We focus on cylindric algebras. Relation algebras and polyadic algebras are mostly covered only insofar as they relate to cylindric algebras, and even there we have not told the whole story. (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Decidable and undecidable logics with a binary modality.ágnes Kurucz, István Németi, Ildikó Sain & András Simon - 1995 - Journal of Logic, Language and Information 4 (3):191-206.
    We give an overview of decidability results for modal logics having a binary modality. We put an emphasis on the demonstration of proof-techniques, and hope that this will also help in finding the borderlines between decidable and undecidable fragments of usual first-order logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Relation algebra reducts of cylindric algebras and an application to proof theory.Robin Hirsch, Ian Hodkinson & Roger D. Maddux - 2002 - Journal of Symbolic Logic 67 (1):197-213.
    We confirm a conjecture, about neat embeddings of cylindric algebras, made in 1969 by J. D. Monk, and a later conjecture by Maddux about relation algebras obtained from cylindric algebras. These results in algebraic logic have the following consequence for predicate logic: for every finite cardinal α ≥ 3 there is a logically valid sentence X, in a first-order language L with equality and exactly one nonlogical binary relation symbol E, such that X contains only 3 variables (each of which (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Conceptual Distance and Algebras of Concepts.Mohamed Khaled & Gergely Székely - forthcoming - Review of Symbolic Logic:1-16.
    We show that the conceptual distance between any two theories of first-order logic is the same as the generator distance between their Lindenbaum–Tarski algebras of concepts. As a consequence of this, we show that, for any two arbitrary mathematical structures, the generator distance between their meaning algebras (also known as cylindric set algebras) is the same as the conceptual distance between their first-order logic theories. As applications, we give a complete description for the distances between meaning algebras corresponding to structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On the Complexity of Modal Axiomatisations over Many-dimensional Structures.Agi Kurucz - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 256-270.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Algebraic structuralism.Neil Dewar - 2019 - Philosophical Studies 176 (7):1831-1854.
    This essay is about how the notion of “structure” in ontic structuralism might be made precise. More specifically, my aim is to make precise the idea that the structure of the world is given by the relations inhering in the world, in such a way that the relations are ontologically prior to their relata. The central claim is the following: one can do so by giving due attention to the relationships that hold between those relations, by making use of certain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Expressibility of properties of relations.Hajnal Andréka, Ivo Düntsch & István Németi - 1995 - Journal of Symbolic Logic 60 (3):970-991.
    We investigate in an algebraic setting the question of which logical languages can express the properties integral, permutational, and rigid for algebras of relations.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Neat embeddings as adjoint situations.Tarek Sayed-Ahmed - 2015 - Synthese 192 (7):1-37.
    Looking at the operation of forming neat $\alpha $ -reducts as a functor, with $\alpha $ an infinite ordinal, we investigate when such a functor obtained by truncating $\omega $ dimensions, has a right adjoint. We show that the neat reduct functor for representable cylindric algebras does not have a right adjoint, while that of polyadic algebras is an equivalence. We relate this categorial result to several amalgamation properties for classes of representable algebras. We show that the variety of cylindric (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Complete representations in algebraic logic.Robin Hirsch & Ian Hodkinson - 1997 - Journal of Symbolic Logic 62 (3):816-847.
    A boolean algebra is shown to be completely representable if and only if it is atomic, whereas it is shown that neither the class of completely representable relation algebras nor the class of completely representable cylindric algebras of any fixed dimension (at least 3) are elementary.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Step by step – Building representations in algebraic logic.Robin Hirsch & Ian Hodkinson - 1997 - Journal of Symbolic Logic 62 (1):225-279.
    We consider the problem of finding and classifying representations in algebraic logic. This is approached by letting two players build a representation using a game. Homogeneous and universal representations are characterized according to the outcome of certain games. The Lyndon conditions defining representable relation algebras (for the finite case) and a similar schema for cylindric algebras are derived. Finite relation algebras with homogeneous representations are characterized by first order formulas. Equivalence games are defined, and are used to establish whether an (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Omitting types algebraically and more about amalgamation for modal cylindric algebras.Tarek Sayed Ahmed - 2021 - Mathematical Logic Quarterly 67 (3):295-312.
    Let α be an arbitrary infinite ordinal, and. In [26] we studied—using algebraic logic—interpolation and amalgamation for an extension of first order logic, call it, with α many variables, using a modal operator of a unimodal logic that contributes to the semantics. Our algebraic apparatus was the class of modal cylindric algebras. Modal cylindric algebras, briefly, are cylindric algebras of dimension α, expanded with unary modalities inheriting their semantics from a unimodal logic such as, or. When modal cylindric algebras based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On axiomatising products of Kripke frames.Agnes Kurucz - 2000 - Journal of Symbolic Logic 65 (2):923-945.
    It is shown that the many-dimensional modal logic K n , determined by products of n-many Kripke frames, is not finitely axiomatisable in the n-modal language, for any $n > 2$ . On the other hand, K n is determined by a class of frames satisfying a single first-order sentence.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • First order logic without equality on relativized semantics.Amitayu Banerjee & Mohamed Khaled - 2018 - Annals of Pure and Applied Logic 169 (11):1227-1242.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (2 other versions)On modal logics between K × K × K and s5 × s5 × S.R. Hirsch, I. Hodkinson & A. Kurucz - 2002 - Journal of Symbolic Logic 67 (1):221-234.
    We prove that everyn-modal logic betweenKnandS5nis undecidable, whenever n ≥ 3. We also show that each of these logics is non-finitely axiomatizable, lacks the product finite model property, and there is no algorithm deciding whether a finite frame validates the logic. These results answer several questions of Gabbay and Shehtman. The proofs combine the modal logic technique of Yankov–Fine frame formulas with algebraic logic results of Halmos, Johnson and Monk, and give a reduction of the representation problem of finite relation (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On Generalization of Definitional Equivalence to Non-Disjoint Languages.Koen Lefever & Gergely Székely - 2019 - Journal of Philosophical Logic 48 (4):709-729.
    For simplicity, most of the literature introduces the concept of definitional equivalence only for disjoint languages. In a recent paper, Barrett and Halvorson introduce a straightforward generalization to non-disjoint languages and they show that their generalization is not equivalent to intertranslatability in general. In this paper, we show that their generalization is not transitive and hence it is not an equivalence relation. Then we introduce another formalization of definitional equivalence due to Andréka and Németi which is equivalent to the Barrett–Halvorson (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Complexity of equational theory of relational algebras with projection elements.Szabolcs Mikulás, Ildikó Sain & Andras Simon - 1992 - Bulletin of the Section of Logic 21 (3):103-111.
    The class \ of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of \ nor the first order theory of \ are decidable. Moreover, we show that the set of all equations valid in \ is exactly on the \ level. We consider the class \ of the relation algebra reducts of \ ’s, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Amalgamation Theorems in Algebraic Logic, an overview.Tarek Sayed-Ahmed - 2005 - Logic Journal of the IGPL 13 (3):277-286.
    We review, and in the process unify two techniques , for proving results concerning amalgamation in several classes studied in algebraic logic. The logical counterpart of these results adress interpolation and definability properties in modal and algebraic logic. Presenting them in a functorial context as adjoint situations, we show that both techniques can indeed be seen as instances of the use of the Keisler-Shelah ultrapower Theorem in proving Robinson's Joint Consistency Theorem. Some new results are surveyed. The results of this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Complexity of equational theory of relational algebras with standard projection elements.Szabolcs Mikulás, Ildikó Sain & András Simon - 2015 - Synthese 192 (7):2159-2182.
    The class $$\mathsf{TPA}$$ TPA of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of $$\mathsf{TPA}$$ TPA nor the first order theory of $$\mathsf{TPA}$$ TPA are decidable. Moreover, we show that the set of all equations valid in $$\mathsf{TPA}$$ TPA is exactly on the $$\Pi ^1_1$$ Π 1 1 level. We consider the class $$\mathsf{TPA}^-$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relation algebras from cylindric algebras, I.Robin Hirsch & Ian Hodkinson - 2001 - Annals of Pure and Applied Logic 112 (2-3):225-266.
    We characterise the class S Ra CA n of subalgebras of relation algebra reducts of n -dimensional cylindric algebras by the notion of a ‘hyperbasis’, analogous to the cylindric basis of Maddux, and by representations. We outline a game–theoretic approximation to the existence of a representation, and how to use it to obtain a recursive axiomatisation of S Ra CA n.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The cylindric algebras of three-valued logic.Norman Feldman - 1998 - Journal of Symbolic Logic 63 (4):1201-1217.
    Download  
     
    Export citation  
     
    Bookmark  
  • Omitting types for algebraizable extensions of first order logic.Tarek Sayed Ahmed - 2005 - Journal of Applied Non-Classical Logics 15 (4):465-489.
    We prove an Omitting Types Theorem for certain algebraizable extensions of first order logic without equality studied in [SAI 00] and [SAY 04]. This is done by proving a representation theorem preserving given countable sets of infinite meets for certain reducts of ?- dimensional polyadic algebras, the so-called G polyadic algebras (Theorem 5). Here G is a special subsemigroup of (?, ? o) that specifies the signature of the algebras in question. We state and prove an independence result connecting our (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On canonicity and completions of weakly representable relation algebras.Ian Hodkinson & Szabolcs Mikulás - 2012 - Journal of Symbolic Logic 77 (1):245-262.
    We show that the variety of weakly representable relation algebras is neither canonical nor closed under Monk completions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Algebraization of quantifier logics, an introductory overview.István Németi - 1991 - Studia Logica 50 (3-4):485 - 569.
    This paper is an introduction: in particular, to algebras of relations of various ranks, and in general, to the part of algebraic logic algebraizing quantifier logics. The paper has a survey character, too. The most frequently used algebras like cylindric-, relation-, polyadic-, and quasi-polyadic algebras are carefully introduced and intuitively explained for the nonspecialist. Their variants, connections with logic, abstract model theory, and further algebraic logics are also reviewed. Efforts were made to make the review part relatively comprehensive. In some (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • On duality and model theory for polyadic spaces.Sam van Gool & Jérémie Marquès - 2024 - Annals of Pure and Applied Logic 175 (2):103388.
    Download  
     
    Export citation  
     
    Bookmark  
  • Epimorphism surjectivity in varieties of Heyting algebras.T. Moraschini & J. J. Wannenburg - 2020 - Annals of Pure and Applied Logic 171 (9):102824.
    It was shown recently that epimorphisms need not be surjective in a variety K of Heyting algebras, but only one counter-example was exhibited in the literature until now. Here, a continuum of such examples is identified, viz. the variety generated by the Rieger-Nishimura lattice, and all of its (locally finite) subvarieties that contain the original counter-example K . It is known that, whenever a variety of Heyting algebras has finite depth, then it has surjective epimorphisms. In contrast, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Distances between formal theories.Michele Friend, Mohamed Khaled, Koen Lefever & Gergely Székely - unknown - Review of Symbolic Logic 13 (3):633-654.
    In the literature, there have been several methods and definitions for working out whether two theories are “equivalent” or not. In this article, we do something subtler. We provide a means to measure distances between formal theories. We introduce two natural notions for such distances. The first one is that of axiomatic distance, but we argue that it might be of limited interest. The more interesting and widely applicable notion is that of conceptual distance which measures the minimum number of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (2 other versions)On modal logics between {$\roman K\times\roman K\times \roman K$} and {${\rm S}5\times{\rm S}5\times{\rm S}5$}.R. Hirsch, I. Hodkinson & A. Kurucz - 2002 - Journal of Symbolic Logic 67 (1):221-234.
    We prove that everyn-modal logic betweenKnandS5nis undecidable, whenever n ≥ 3. We also show that each of these logics is non-finitely axiomatizable, lacks the product finite model property, and there is no algorithm deciding whether a finite frame validates the logic. These results answer several questions of Gabbay and Shehtman. The proofs combine the modal logic technique of Yankov–Fine frame formulas with algebraic logic results of Halmos, Johnson and Monk, and give a reduction of the representation problem of finite relation (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Relation algebras of every dimension.Roger D. Maddux - 1992 - Journal of Symbolic Logic 57 (4):1213-1229.
    Conjecture (1) of [Ma83] is confirmed here by the following result: if $3 \leq \alpha < \omega$, then there is a finite relation algebra of dimension α, which is not a relation algebra of dimension α + 1. A logical consequence of this theorem is that for every finite α ≥ 3 there is a formula of the form $S \subseteq T$ (asserting that one binary relation is included in another), which is provable with α + 1 variables, but not (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Lambek calculus and its relational semantics: Completeness and incompleteness. [REVIEW]Hajnal Andréka & Szabolcs Mikulás - 1994 - Journal of Logic, Language and Information 3 (1):1-37.
    The problem of whether Lambek Calculus is complete with respect to (w.r.t.) relational semantics, has been raised several times, cf. van Benthem (1989a) and van Benthem (1991). In this paper, we show that the answer is in the affirmative. More precisely, we will prove that that version of the Lambek Calculus which does not use the empty sequence is strongly complete w.r.t. those relational Kripke-models where the set of possible worlds,W, is a transitive binary relation, while that version of the (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • On Generalization of Definitional Equivalence to Languages with Non-Disjoint Signatures.Koen Lefever & Gergely Székely - unknown
    For simplicity, most of the literature introduces the concept of definitional equivalence only to languages with disjoint signatures. In a recent paper, Barrett and Halvorson introduce a straightforward generalization to languages with non-disjoint signatures and they show that their generalization is not equivalent to intertranslatability in general. In this paper,we show that their generalization is not transitive and hence it is not an equivalence relation. Then we introduce the Andréka and Németi generalization as one of the many equivalent formulations for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Definability and Interpolation in Non-Classical Logics.Larisa Maksimova - 2006 - Studia Logica 82 (2):271-291.
    Algebraic approach to study of classical and non-classical logical calculi was developed and systematically presented by Helena Rasiowa in [48], [47]. It is very fruitful in investigation of non-classical logics because it makes possible to study large families of logics in an uniform way. In such research one can replace logics with suitable classes of algebras and apply powerful machinery of universal algebra. In this paper we present an overview of results on interpolation and definability in modal and positive logics,and (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Weakly higher order cylindric algebras and finite axiomatization of the representables.I. Németi & A. Simon - 2009 - Studia Logica 91 (1):53 - 62.
    We show that the variety of n -dimensional weakly higher order cylindric algebras, introduced in Németi [9], [8], is finitely axiomatizable when n > 2. Our result implies that in certain non-well-founded set theories the finitization problem of algebraic logic admits a positive solution; and it shows that this variety is a good candidate for being the cylindric algebra theoretic counterpart of Tarski’s quasi-projective relation algebras.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Structuralism and representation theorems.George Weaver - 1998 - Philosophia Mathematica 6 (3):257-271.
    Much of the inspiration for structuralist approaches to mathematics can be found in the late nineteenth- and early twentieth-century program of characterizing various mathematical systems upto isomorphism. From the perspective of this program, differences between isomorphic systems are irrelevant. It is argued that a different view of the import of the differences between isomorphic systems can be obtained from the perspective of contemporary discussions of representation theorems and that from this perspective both the identification of isomorphic systems and the reduction (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The Class SNr3CAk is Not Closed Under Completions.T. Sayed-Ahmed & B. Samir - 2008 - Logic Journal of the IGPL 16 (5):427-429.
    Download  
     
    Export citation  
     
    Bookmark  
  • Beth definability and the Stone-Weierstrass Theorem.Luca Reggio - 2021 - Annals of Pure and Applied Logic 172 (8):102990.
    The Stone-Weierstrass Theorem for compact Hausdorff spaces is a basic result of functional analysis with far-reaching consequences. We introduce an equational logic ⊨Δ associated with an infinitary variety Δ and show that the Stone-Weierstrass Theorem is a consequence of the Beth definability property of ⊨Δ, stating that every implicit definition can be made explicit. Further, we define an infinitary propositional logic ⊢Δ by means of a Hilbert-style calculus and prove a strong completeness result whereby the semantic notion of consequence associated (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Free q-distributive lattices.Roberto Cignoli - 1996 - Studia Logica 56 (1-2):23 - 29.
    The dual spaces of the free distributive lattices with a quantifier are constructed, generalizing Halmos' construction of the dual spaces of free monadic Boolean algebras.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Isomorphic but not lower base-isomorphic cylindric set algebras.B. Biró & S. Shelah - 1988 - Journal of Symbolic Logic 53 (3):846-853.
    This paper belongs to cylindric-algebraic model theory understood in the sense of algebraic logic. We show the existence of isomorphic but not lower base-isomorphic cylindric set algebras. These algebras are regular and locally finite. This solves a problem raised in [N 83] which was implicitly present also in [HMTAN 81]. This result implies that a theorem of Vaught for prime models of countable languages does not continue to hold for languages of any greater power.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Notions of density that imply representability in algebraic logic.Hajnal Andréka, Steven Givant, Szabolcs Mikulás, István Németi & András Simon - 1998 - Annals of Pure and Applied Logic 91 (2-3):93-190.
    Henkin and Tarski proved that an atomic cylindric algebra in which every atom is a rectangle must be representable . This theorem and its analogues for quasi-polyadic algebras with and without equality are formulated in Henkin, Monk and Tarski [13]. We introduce a natural and more general notion of rectangular density that can be applied to arbitrary cylindric and quasi-polyadic algebras, not just atomic ones. We then show that every rectangularly dense cylindric algebra is representable, and we extend this result (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations