Switch to: References

Citations of:

Recherches Sur la Th”Eorie de la D”Emonstration

Dissertation, Universit’e de Paris (1930)

Add citations

You must login to add citations.
  1. The Church-Turing Thesis.B. Jack Copeland - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.
    There are various equivalent formulations of the Church-Turing thesis. A common one is that every effective computation can be carried out by a Turing machine. The Church-Turing thesis is often misunderstood, particularly in recent writing in the philosophy of mind.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Does the deduction theorem fail for modal logic?Raul Hakli & Sara Negri - 2012 - Synthese 187 (3):849-867.
    Various sources in the literature claim that the deduction theorem does not hold for normal modal or epistemic logic, whereas others present versions of the deduction theorem for several normal modal systems. It is shown here that the apparent problem arises from an objectionable notion of derivability from assumptions in an axiomatic system. When a traditional Hilbert-type system of axiomatic logic is generalized into a system for derivations from assumptions, the necessitation rule has to be modified in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Hilbert’s Program.Richard Zach - 2012 - In Ed Zalta (ed.), Stanford Encyclopedia of Philosophy. Stanford, CA: Stanford Encyclopedia of Philosophy.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Natural Deduction, Hybrid Systems and Modal Logics.Andrzej Indrzejczak - 2010 - Dordrecht, Netherland: Springer.
    This book provides a detailed exposition of one of the most practical and popular methods of proving theorems in logic, called Natural Deduction. It is presented both historically and systematically. Also some combinations with other known proof methods are explored. The initial part of the book deals with Classical Logic, whereas the rest is concerned with systems for several forms of Modal Logics, one of the most important branches of modern logic, which has wide applicability.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Deduction Theorem (Before and After Herbrand).Curtis Franks - 2021 - History and Philosophy of Logic 42 (2):129-159.
    Attempts to articulate the real meaning or ultimate significance of a famous theorem comprise a major vein of philosophical writing about mathematics. The subfield of mathematical logic has supplie...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logic in mathematics and computer science.Richard Zach - forthcoming - In Filippo Ferrari, Elke Brendel, Massimiliano Carrara, Ole Hjortland, Gil Sagi, Gila Sher & Florian Steinberger (eds.), Oxford Handbook of Philosophy of Logic. Oxford, UK: Oxford University Press.
    Logic has pride of place in mathematics and its 20th century offshoot, computer science. Modern symbolic logic was developed, in part, as a way to provide a formal framework for mathematics: Frege, Peano, Whitehead and Russell, as well as Hilbert developed systems of logic to formalize mathematics. These systems were meant to serve either as themselves foundational, or at least as formal analogs of mathematical reasoning amenable to mathematical study, e.g., in Hilbert’s consistency program. Similar efforts continue, but have been (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Gentzen and Jaśkowski Natural Deduction: Fundamentally Similar but Importantly Different.Allen P. Hazen & Francis Jeffry Pelletier - 2014 - Studia Logica 102 (6):1103-1142.
    Gentzen’s and Jaśkowski’s formulations of natural deduction are logically equivalent in the normal sense of those words. However, Gentzen’s formulation more straightforwardly lends itself both to a normalization theorem and to a theory of “meaning” for connectives . The present paper investigates cases where Jaskowski’s formulation seems better suited. These cases range from the phenomenology and epistemology of proof construction to the ways to incorporate novel logical connectives into the language. We close with a demonstration of this latter aspect by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Hilbert's 'Verunglückter Beweis', the first epsilon theorem, and consistency proofs.Richard Zach - 2004 - History and Philosophy of Logic 25 (2):79-94.
    In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert's programme, were working on consistency proofs for arithmetical systems. One proposed method of giving such proofs is Hilbert's epsilon-substitution method. There was, however, a second approach which was not reflected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert's first epsilon theorem and a certain "general consistency result" due to Bernays. An analysis of the form of this so-called "failed proof" (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Cut as Consequence.Curtis Franks - 2010 - History and Philosophy of Logic 31 (4):349-379.
    The papers where Gerhard Gentzen introduced natural deduction and sequent calculi suggest that his conception of logic differs substantially from the now dominant views introduced by Hilbert, Gödel, Tarski, and others. Specifically, (1) the definitive features of natural deduction calculi allowed Gentzen to assert that his classical system nk is complete based purely on the sort of evidence that Hilbert called ?experimental?, and (2) the structure of the sequent calculi li and lk allowed Gentzen to conceptualize completeness as a question (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (1 other version)Counterfactual Logic and the Necessity of Mathematics.Samuel Elgin - manuscript
    This paper is concerned with counterfactual logic and its implications for the modal status of mathematical claims. It is most directly a response to an ambitious program by Yli-Vakkuri and Hawthorne (2018), who seek to establish that mathematics is committed to its own necessity. I claim that their argument fails to establish this result for two reasons. First, their assumptions force our hand on a controversial debate within counterfactual logic. In particular, they license counterfactual strengthening— the inference from ‘If A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • “Clarifying the nature of the infinite”: The development of metamathematics and proof theory.Jeremy Avigad - manuscript
    We discuss the development of metamathematics in the Hilbert school, and Hilbert’s proof-theoretic program in particular. We place this program in a broader historical and philosophical context, especially with respect to nineteenth century developments in mathematics and logic. Finally, we show how these considerations help frame our understanding of metamathematics and proof theory today.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Finite mathematics.Shaughan Lavine - 1995 - Synthese 103 (3):389 - 420.
    A system of finite mathematics is proposed that has all of the power of classical mathematics. I believe that finite mathematics is not committed to any form of infinity, actual or potential, either within its theories or in the metalanguage employed to specify them. I show in detail that its commitments to the infinite are no stronger than those of primitive recursive arithmetic. The finite mathematics of sets is comprehensible and usable on its own terms, without appeal to any form (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Note on Deduction Theorems in contraction‐free logics.Karel Chvalovský & Petr Cintula - 2012 - Mathematical Logic Quarterly 58 (3):236-243.
    This paper provides a finer analysis of the well-known form of the Local Deduction Theorem in contraction-free logics . An infinite hierarchy of its natural strengthenings is introduced and studied. The main results are the separation of its initial four members and the subsequent collapse of the hierarchy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Grundlagen der Arithmetik, §17: Part 1. Frege’s Anticipation of the Deduction Theorem.Göran Sundholm - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 53-84.
    A running commentary is offered on the first half of Frege’s Grundlagen der Arithmetik, §17, and suggests that Frege anticipated the method of demonstration used by Paul Bernays for the Deduction Theorem.
    Download  
     
    Export citation  
     
    Bookmark  
  • The road to two theorems of logic.William Craig - 2008 - Synthese 164 (3):333 - 339.
    Work on how to axiomatize the subtheories of a first-order theory in which only a proper subset of their extra-logical vocabulary is being used led to a theorem on recursive axiomatizability and to an interpolation theorem for first-order logic. There were some fortuitous events and several logicians played a helpful role.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Landscape of Logics beyond the Deduction Theorem.Bas C. van Fraassen - 2022 - Principia: An International Journal of Epistemology 26 (1):25-38.
    Philosophical issues often turn into logic. That is certainly true of Moore’s Paradox, which tends to appear and reappear in many philosophical contexts. There is no doubt that its study belongs to pragmatics rather than semantics or syntax. But it is also true that issues in pragmatics can often be studied fruitfully by attending to their projection, so to speak, onto the levels of semantics or syntax — just in the way that problems in spherical geometry are often illuminated by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • First-order logic.Per Lindström - unknown
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • El problema de la decisión en la lógica de predicados.Jesús Mosterín - 1973 - Convivium: revista de filosofía 39:3-11.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Jean van Heijenoort’s Contributions to Proof Theory and Its History.Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):411-458.
    Jean van Heijenoort was best known for his editorial work in the history of mathematical logic. I survey his contributions to model-theoretic proof theory, and in particular to the falsifiability tree method. This work of van Heijenoort’s is not widely known, and much of it remains unpublished. A complete list of van Heijenoort’s unpublished writings on tableaux methods and related work in proof theory is appended.
    Download  
     
    Export citation  
     
    Bookmark  
  • Jean van Heijenoort’s Conception of Modern Logic, in Historical Perspective.Irving H. Anellis - 2012 - Logica Universalis 6 (3):339-409.
    I use van Heijenoort’s published writings and manuscript materials to provide a comprehensive overview of his conception of modern logic as a first-order functional calculus and of the historical developments which led to this conception of mathematical logic, its defining characteristics, and in particular to provide an integral account, from his most important publications as well as his unpublished notes and scattered shorter historico-philosophical articles, of how and why the mathematical logic, whose he traced to Frege and the culmination of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lorenzen's Proof of Consistency for Elementary Number Theory.Thierry Coquand & Stefan Neuwirth - 2020 - History and Philosophy of Logic 41 (3):281-290.
    We present a manuscript of Paul Lorenzen that provides a proof of consistency for elementary number theory as an application of the construction of the free countably complete pseudocomplemented semilattice over a preordered set. This manuscript rests in the Oskar-Becker-Nachlass at the Philosophisches Archiv of Universität Konstanz, file OB 5-3b-5. It has probably been written between March and May 1944. We also compare this proof to Gentzen's and Novikov's, and provide a translation of the manuscript.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Gödelian Inferences.Curtis Franks - 2009 - History and Philosophy of Logic 30 (3):241-256.
    I attribute an 'intensional reading' of the second incompleteness theorem to its author, Kurt G del. My argument builds partially on an analysis of intensional and extensional conceptions of meta-mathematics and partially on the context in which G del drew two familiar inferences from his theorem. Those inferences, and in particular the way that they appear in G del's writing, are so dubious on the extensional conception that one must doubt that G del could have understood his theorem extensionally. However, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The eskolemization of universal quantifiers.Rosalie Iemhoff - 2010 - Annals of Pure and Applied Logic 162 (3):201-212.
    This paper is a sequel to the papers Baaz and Iemhoff [4] and [6] in which an alternative skolemization method called eskolemization was introduced that, when restricted to strong existential quantifiers, is sound and complete for constructive theories. In this paper we extend the method to universal quantifiers and show that for theories satisfying the witness property it is sound and complete for all formulas. We obtain a Herbrand theorem from this, and apply the method to the intuitionistic theory of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the practical value of Herbrand disjunctions.Uwe Petermann - 2000 - Logic and Logical Philosophy 8:153.
    Herbrand disjunctions are a means for reducing the problem ofwhether a first-oder formula is valid in an open theory T or not to theproblem whether an open formula, one of the so called Herbrand disjunctions,is T -valid or not. Nevertheless, the set of Herbrand disjunctions, which hasto be examined, is undecidable in general. Fore this reason the practicalvalue of Herbrand disjunctions has been estimated negatively .Relying on completeness proofs which are based on the algebraizationtechnique presented in [30], but taking a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ALONZO: Deduktionsagenten höherer Ordnung für Mathematische Assistenzsysteme.Benzmüller Christoph - 2003
    Download  
     
    Export citation  
     
    Bookmark  
  • Herbrand Theorems: the Classical and Intuitionistic Cases.Alexander Lyaletski - 2008 - Studies in Logic, Grammar and Rhetoric 14 (27).
    Download  
     
    Export citation  
     
    Bookmark  
  • Guest Editor’s Introduction: JvH100. [REVIEW]Irving H. Anellis - 2012 - Logica Universalis 6 (3-4):249-267.
    Download  
     
    Export citation  
     
    Bookmark