Switch to: References

Add citations

You must login to add citations.
  1. Muḥyī al-Dīn al-Maghribī’s lunar measurements at the Maragha observatory.S. Mohammad Mozaffari - 2014 - Archive for History of Exact Sciences 68 (1):67-120.
    This paper is a technical study of the systematic observations and computations made by Muḥyī al-Dīn al-Maghribī (d. 1283) at the Maragha observatory (north-western Iran, c. 1259–1320) in order to newly determine the parameters of the Ptolemaic lunar model, as explained in his Talkhīṣ al-majisṭī, “Compendium of the Almagest.” He used three lunar eclipses on March 7, 1262, April 7, 1270, and January 24, 1274, in order to measure the lunar epicycle radius and mean motions; an observation on April 20, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Revisiting Al-Samaw’al’s table of binomial coefficients: Greek inspiration, diagrammatic reasoning and mathematical induction.Clemency Montelle, John Hannah & Sanaa Bajri - 2015 - Archive for History of Exact Sciences 69 (6):537-576.
    In a famous passage from his al-Bāhir, al-Samaw’al proves the identity which we would now write as (ab)n=anbn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(ab)^n=a^n b^n$$\end{document} for the cases n=3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3,4$$\end{document}. He also calculates the equivalent of the expansion of the binomial (a+b)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a+b)^n$$\end{document} for the same values of n and describes the construction of what we now call the Pascal Triangle, showing (...)
    Download  
     
    Export citation  
     
    Bookmark