Switch to: References

Add citations

You must login to add citations.
  1. Upper bounds on locally countable admissible initial segments of a Turing degree hierarchy.Harold T. Hodes - 1981 - Journal of Symbolic Logic 46 (4):753-760.
    Where AR is the set of arithmetic Turing degrees, 0 (ω ) is the least member of { $\mathbf{\alpha}^{(2)}|\mathbf{a}$ is an upper bound on AR}. This situation is quite different if we examine HYP, the set of hyperarithmetic degrees. We shall prove (Corollary 1) that there is an a, an upper bound on HYP, whose hyperjump is the degree of Kleene's O. This paper generalizes this example, using an iteration of the jump operation into the transfinite which is based on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finite level borel games and a problem concerning the jump hierarchy.Harold T. Hodes - 1984 - Journal of Symbolic Logic 49 (4):1301-1318.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical definability.Theodore A. Slaman - 1998 - In Harold Garth Dales & Gianluigi Oliveri (eds.), Truth in mathematics. New York: Oxford University Press, Usa. pp. 233.
    Download  
     
    Export citation  
     
    Bookmark  
  • A non-inversion theorem for the jump operator.Richard A. Shore - 1988 - Annals of Pure and Applied Logic 40 (3):277-303.
    Download  
     
    Export citation  
     
    Bookmark   16 citations