Switch to: References

Add citations

You must login to add citations.
  1. ‘Fervent spenglerians:’ romanising the historic morphology of cultures in Spain.Carl Antonius Lemke Duque - 2022 - History of European Ideas 48 (5):594-613.
    ABSTRACT This study analyses the impact of Oswald Spengler’s work in Spain during the interwar period. It proceeds with three steps as follows: The first part investigates the reception of Spengler’s historic morphology of cultures in the so-called circle of the Revista de Occidente. The second part delves into the early echo of Spengler’s work among the Spanish left up to the Second Spanish Republic. The third part focuses on the impact of Spengler’s historic morphology among conservative traditionalists and members (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The general-relativistic case for super-substantivalism.Claudio Calosi & Patrick M. Duerr - 2021 - Synthese 199 (5-6):13789-13822.
    Super-substantivalism (of the type we’ll consider) roughly comprises two core tenets: (1) the physical properties which we attribute to matter (e.g. charge or mass) can be attributed to spacetime directly, with no need for matter as an extraneous carrier “on top of” spacetime; (2) spacetime is more fundamental than (ontologically prior to) matter. In the present paper, we revisit a recent argument in favour of super-substantivalism, based on General Relativity. A critique is offered that highlights the difference between (various accounts (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dark matter = modified gravity? Scrutinising the spacetime–matter distinction through the modified gravity/ dark matter lens.Niels C. M. Martens & Dennis Lehmkuhl - 2020 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 72:237-250.
    This paper scrutinises the tenability of a strict conceptual distinction between space and matter via the lens of the debate between modified gravity and dark matter. In particular, we consider Berezhiani and Khoury's novel 'superfluid dark matter theory' as a case study. Two families of criteria for being matter and being spacetime, respectively, are extracted from the literature. Evaluation of the new scalar field postulated by SFDM according to these criteria reveals that it is as much matter as anything could (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • General relativity as a hybrid theory: The genesis of Einstein's work on the problem of motion.Dennis Lehmkuhl - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67:176-190.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Einstein's Role in the Creation of Relativistic Cosmology.Chris Smeenk - 2014 - In Michel Janssen & Christoph Lehner (eds.), The Cambridge Companion to Einstein. Cambridge University Press. pp. 228-269.
    This volume is the first systematic presentation of the work of Albert Einstein, comprising fourteen essays by leading historians and philosophers of science that introduce readers to his work. Following an introduction that places Einstein's work in the context of his life and times, the book opens with essays on the papers of Einstein's 'miracle year', 1905, covering Brownian motion, light quanta, and special relativity, as well as his contributions to early quantum theory and the opposition to his light quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Why Einstein did not believe that general relativity geometrizes gravity.Dennis Lehmkuhl - unknown
    I argue that, contrary to folklore, Einstein never really cared for geometrizing the gravitational or the electromagnetic field; indeed, he thought that the very statement that General Relativity geometrizes gravity "is not saying anything at all". Instead, I shall show that Einstein saw the "unification" of inertia and gravity as one of the major achievements of General Relativity. Interestingly, Einstein did not locate this unification in the field equations but in his interpretation of the geodesic equation, the law of motion (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Energy Conservation in GTR.Carl Hoefer - 2000 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 31 (2):187-199.
    The topics of gravitational field energy and energy-momentum conservation in General Relativity theory have been unjustly neglected by philosophers. If the gravitational field in space free of ordinary matter, as represented by the metric g ab itself, can be said to carry genuine energy and momentum, this is a powerful argument for adopting the substantivalist view of spacetime.This paper explores the standard textbook account of gravitational field energy and argues that (a) so-called stress-energy of the gravitational field is well-defined neither (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Can We Justifiably Assume the Cosmological Principle in Order to Break Model Underdetermination in Cosmology?Claus Beisbart - 2009 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (2):175-205.
    If cosmology is to obtain knowledge about the whole universe, it faces an underdetermination problem: Alternative space-time models are compatible with our evidence. The problem can be avoided though, if there are good reasons to adopt the Cosmological Principle (CP), because, assuming the principle, one can confine oneself to the small class of homogeneous and isotropic space-time models. The aim of this paper is to ask whether there are good reasons to adopt the Cosmological Principle in order to avoid underdetermination (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Einstein, the reality of space, and the action-reaction principle.Dennis Lehmkuhl, P. Ghose & Harvey Brown - unknown
    Einstein regarded as one of the triumphs of his 1915 theory of gravity - the general theory of relativity - that it vindicated the action-reaction principle, while Newtonian mechanics as well as his 1905 special theory of relativity supposedly violated it. In this paper we examine why Einstein came to emphasise this position several years after the development of general relativity. Several key considerations are relevant to the story: the connection Einstein originally saw between Mach's analysis of inertia and both (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association.Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.) - 2009 - Dordrecht, Netherland: Springer.
    This volume collects papers presented at the Founding Conference of the European Philosophy of Science Association meeting, held November 2007. It provides an excellent overview of the state of the art in philosophy of science in different European countries.
    Download  
     
    Export citation  
     
    Bookmark  
  • Understanding Physics: ‘What?’, ‘Why?’, and ‘How?’.Mario Hubert - 2021 - European Journal for Philosophy of Science 11 (3):1-36.
    I want to combine two hitherto largely independent research projects, scientific understanding and mechanistic explanations. Understanding is not only achieved by answering why-questions, that is, by providing scientific explanations, but also by answering what-questions, that is, by providing what I call scientific descriptions. Based on this distinction, I develop three forms of understanding: understanding-what, understanding-why, and understanding-how. I argue that understanding-how is a particularly deep form of understanding, because it is based on mechanistic explanations, which answer why something happens in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mach׳s principle as action-at-a-distance in GR: The causality question.Carl Hoefer - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (2):128-136.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mass‐energy‐momentum: Only there because of spacetime.Dennis Lehmkuhl - 2011 - British Journal for the Philosophy of Science 62 (3):453-488.
    I describe how relativistic field theory generalizes the paradigm property of material systems, the possession of mass, to the requirement that they have a mass–energy–momentum density tensor T µ associated with them. I argue that T µ does not represent an intrinsic property of matter. For it will become evident that the definition of T µ depends on the metric field g µ in a variety of ways. Accordingly, since g µ represents the geometry of spacetime itself, the properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Absolute versus relational spacetime: For better or worse, the debate goes on.Carl Hoefer - 1998 - British Journal for the Philosophy of Science 49 (3):451-467.
    The traditional absolutist-relationist debate is still clearly formulable in the context of General Relativity Theory (GTR), despite the important differences between Einstein's theory and the earlier context of Newtonian physics. This paper answers recent arguments by Robert Rynasiewicz against the significance of the debate in the GTR context. In his (1996) (‘Absolute vs. Relational Spacetime: An Outmoded Debate?’), Rynasiewicz argues that already in the late nineteenth century, and even more so in the context of General Relativity theory, the terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • 'No success like failure ...': Einstein's Quest for general relativity, 1907-1920.Michel Janssen - unknown
    This is the chapter on general relativity for the Cambridge Companion to Einstein which I am co-editing with Christoph Lehner.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gauge symmetry and the Theta vacuum.Richard Healey - 2009 - In Mauricio Suárez, Mauro Dorato & Miklós Rédei (eds.), EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association. Dordrecht, Netherland: Springer. pp. 105--116.
    According to conventional wisdom, local gauge symmetry is not a symmetry of nature, but an artifact of how our theories represent nature. But a study of the so-called theta-vacuum appears to refute this view. The ground state of a quantized non-Abelian Yang-Mills gauge theory is characterized by a real-valued, dimensionless parameter theta—a fundamental new constant of nature. The structure of this vacuum state is often said to arise from a degeneracy of the vacuum of the corresponding classical theory, which degeneracy (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Equivalence Principle(s).Dennis Lehmkuhl - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I discuss the relationship between different versions of the equivalence principle in general relativity, among them Einstein's equivalence principle, the weak equivalence principle, and the strong equivalence principle. I show that Einstein's version of the equivalence principle is intimately linked to his idea that in GR gravity and inertia are unified to a single field, quite like the electric and magnetic field had been unified in special relativistic electrodynamics. At the same time, what is now often called the strong equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • On Mach on time.Karim P. Y. Thébault - 2021 - Studies in History and Philosophy of Science Part A 89 (C):84-102.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel, Einstein, Mach: Casting constraints on all-embracing concepts. [REVIEW]Giora Hon - 2004 - Foundations of Science 9 (1):25-64.
    Can a theory turn back, as it were, upon itselfand vouch for its own features? That is, canthe derived elements of a theory be the veryprimitive terms that provide thepresuppositions of the theory? This form of anall-embracing feature assumes a totality inwhich there occurs quantification over thattotality, quantification that is defined bythis very totality. I argue that the Machprinciple exhibits such a feature ofall-embracing nature. To clarify the argument,I distinguish between on the one handcompleteness and on the other wholeness andtotality, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Disturbing, but not surprising: Did Gödel surprise Einstein with a rotating universe and time travel? [REVIEW]Giora Hon - 1996 - Foundations of Physics 26 (4):501-521.
    The question is raised as to the kind of methodology required to deal with foundational issues. A comparative study of the methodologies of Gödel and Einstein reveals some similar traits which reflect a concern with foundational problems. It is claimed that the interest in foundational problems stipulates a certain methodology, namely, the methodology of limiting cases.
    Download  
     
    Export citation  
     
    Bookmark   2 citations