Switch to: References

Add citations

You must login to add citations.
  1. Naturalising Representational Content.Nicholas Shea - 2013 - Philosophy Compass 8 (5):496-509.
    This paper sets out a view about the explanatory role of representational content and advocates one approach to naturalising content – to giving a naturalistic account of what makes an entity a representation and in virtue of what it has the content it does. It argues for pluralism about the metaphysics of content and suggests that a good strategy is to ask the content question with respect to a variety of predictively successful information processing models in experimental psychology and cognitive (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Symbol grounding in computational systems: A paradox of intentions.Vincent C. Müller - 2009 - Minds and Machines 19 (4):529-541.
    The paper presents a paradoxical feature of computational systems that suggests that computationalism cannot explain symbol grounding. If the mind is a digital computer, as computationalism claims, then it can be computing either over meaningful symbols or over meaningless symbols. If it is computing over meaningful symbols its functioning presupposes the existence of meaningful symbols in the system, i.e. it implies semantic nativism. If the mind is computing over meaningless symbols, no intentional cognitive processes are available prior to symbol grounding. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The computational theory of mind.Steven Horst - 2005 - Stanford Encyclopedia of Philosophy.
    Over the past thirty years, it is been common to hear the mind likened to a digital computer. This essay is concerned with a particular philosophical view that holds that the mind literally is a digital computer (in a specific sense of “computer” to be developed), and that thought literally is a kind of computation. This view—which will be called the “Computational Theory of Mind” (CTM)—is thus to be distinguished from other and broader attempts to connect the mind with computation, (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • The determinacy of computation.André Curtis-Trudel - 2022 - Synthese 200 (1):1-28.
    A skeptical worry known as ‘the indeterminacy of computation’ animates much recent philosophical reflection on the computational identity of physical systems. On the one hand, computational explanation seems to require that physical computing systems fall under a single, unique computational description at a time. On the other, if a physical system falls under any computational description, it seems to fall under many simultaneously. Absent some principled reason to take just one of these descriptions in particular as relevant for computational explanation, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Representation in Cognitive Science.Nicholas Shea - 2018 - Oxford University Press.
    How can we think about things in the outside world? There is still no widely accepted theory of how mental representations get their meaning. In light of pioneering research, Nicholas Shea develops a naturalistic account of the nature of mental representation with a firm focus on the subpersonal representations that pervade the cognitive sciences.
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • Computationalism in the Philosophy of Mind.Gualtiero Piccinini - 2009 - Philosophy Compass 4 (3):515-532.
    Computationalism has been the mainstream view of cognition for decades. There are periodic reports of its demise, but they are greatly exaggerated. This essay surveys some recent literature on computationalism. It concludes that computationalism is a family of theories about the mechanisms of cognition. The main relevant evidence for testing it comes from neuroscience, though psychology and AI are relevant too. Computationalism comes in many versions, which continue to guide competing research programs in philosophy of mind as well as psychology (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)1. Marr on Computational-Level Theories Marr on Computational-Level Theories (pp. 477-500).Oron Shagrir, John D. Norton, Holger Andreas, Jouni-Matti Kuukkanen, Aris Spanos, Eckhart Arnold, Elliott Sober, Peter Gildenhuys & Adela Helena Roszkowski - 2010 - Philosophy of Science 77 (4):477-500.
    According to Marr, a computational-level theory consists of two elements, the what and the why. This article highlights the distinct role of the Why element in the computational analysis of vision. Three theses are advanced: that the Why element plays an explanatory role in computational-level theories, that its goal is to explain why the computed function is appropriate for a given visual task, and that the explanation consists in showing that the functional relations between the representing cells are similar to (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Against Structuralist Theories of Computational Implementation.Michael Rescorla - 2013 - British Journal for the Philosophy of Science 64 (4):681-707.
    Under what conditions does a physical system implement or realize a computation? Structuralism about computational implementation, espoused by Chalmers and others, holds that a physical system realizes a computation just in case the system instantiates a pattern of causal organization isomorphic to the computation’s formal structure. I argue against structuralism through counter-examples drawn from computer science. On my opposing view, computational implementation sometimes requires instantiating semantic properties that outstrip any relevant pattern of causal organization. In developing my argument, I defend (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • In defense of the semantic view of computation.Oron Shagrir - 2020 - Synthese 197 (9):4083-4108.
    The semantic view of computation is the claim that semantic properties play an essential role in the individuation of physical computing systems such as laptops and brains. The main argument for the semantic view rests on the fact that some physical systems simultaneously implement different automata at the same time, in the same space, and even in the very same physical properties. Recently, several authors have challenged this argument. They accept the premise of simultaneous implementation but reject the semantic conclusion. (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • (1 other version)Marr on computational-level theories.Oron Shagrir - 2010 - Philosophy of Science 77 (4):477-500.
    According to Marr, a computational-level theory consists of two elements, the what and the why . This article highlights the distinct role of the Why element in the computational analysis of vision. Three theses are advanced: ( a ) that the Why element plays an explanatory role in computational-level theories, ( b ) that its goal is to explain why the computed function (specified by the What element) is appropriate for a given visual task, and ( c ) that the (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations