Switch to: References

Citations of:

Quantifying weak emergence

Minds and Machines 18 (4):461-473 (2008)

Add citations

You must login to add citations.
  1. Determinism, predictability and open-ended evolution: lessons from computational emergence.Philippe Huneman - 2012 - Synthese 185 (2):195-214.
    Among many properties distinguishing emergence, such as novelty, irreducibility and unpredictability, computational accounts of emergence in terms of computational incompressibility aim first at making sense of such unpredictability. Those accounts prove to be more objective than usual accounts in terms of levels of mereology, which often face objections of being too epistemic. The present paper defends computational accounts against some objections, and develops what such notions bring to the usual idea of unpredictability. I distinguish the objective unpredictability, compatible with determinism (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Is weak emergence just in the mind?Mark A. Bedau - 2008 - Minds and Machines 18 (4):443-459.
    Weak emergence is the view that a system’s macro properties can be explained by its micro properties but only in an especially complicated way. This paper explains a version of weak emergence based on the notion of explanatory incompressibility and “crawling the causal web.” Then it examines three reasons why weak emergence might be thought to be just in the mind. The first reason is based on contrasting mere epistemological emergence with a form of ontological emergence that involves irreducible downward (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Strengthening Weak Emergence.Nora Berenstain - 2020 - Erkenntnis 87 (5):2457-2474.
    Bedau's influential (1997) account analyzes weak emergence in terms of the non-derivability of a system’s macrostates from its microstates except by simulation. I offer an improved version of Bedau’s account of weak emergence in light of insights from information theory. Non-derivability alone does not guarantee that a system’s macrostates are weakly emergent. Rather, it is non-derivability plus the algorithmic compressibility of the system’s macrostates that makes them weakly emergent. I argue that the resulting information-theoretic picture provides a metaphysical account of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Royce's Model of the Absolute.Eric Steinhart - 2012 - Transactions of the Charles S. Peirce Society 48 (3):356-384.
    At the end of the 19th century, Josiah Royce participated in what has come to be called the great debate (Royce, 1897; Armour, 2005).1 The great debate concerned issues in metaphysical theology, and, since metaphysics was primarily idealistic, it dealt considerably with the relations between the divine Self and lesser selves. After the great debate, Royce developed his idealism in his Gifford Lectures (1898-1900). These were published as The World and the Individual. At the end of the first volume, Royce (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Complexity-based Theories of Emergence: Criticisms and Constraints.Kari L. Theurer - 2014 - International Studies in the Philosophy of Science 28 (3):277-301.
    In recent years, many philosophers of science have attempted to articulate a theory of non-epistemic emergence that is compatible with mechanistic explanation and incompatible with reductionism. The 2005 account of Fred C. Boogerd et al. has been particularly influential. They argued that a systemic property was emergent if it could not be predicted from the behaviour of less complex systems. Here, I argue that Boogerd et al.'s attempt to ground emergence in complexity guarantees that we will see emergence, but at (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Ontology in the Game of Life.Eric Steinhart - 2012 - Axiomathes 22 (3):403-416.
    The game of life is an excellent framework for metaphysical modeling. It can be used to study ontological categories like space, time, causality, persistence, substance, emergence, and supervenience. It is often said that there are many levels of existence in the game of life. Objects like the glider are said to exist on higher levels. Our goal here is to work out a precise formalization of the thesis that there are various levels of existence in the game of life. To (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Setting the Demons Loose: Computational Irreducibility Does Not Guarantee Unpredictability or Emergence.Hamed Tabatabaei Ghomi - 2022 - Philosophy of Science 89 (4):761-783.
    A phenomenon resulting from a computationally irreducible (or computationally incompressible) process is supposedly unpredictable except via simulation. This notion of unpredictability has been deployed to formulate recent accounts of computational emergence. Via a technical analysis, I show that computational irreducibility can establish the impossibility of prediction only with respect to maximum standards of precision. By articulating the graded nature of prediction, I show that unpredictability to maximum standards is not equivalent to being unpredictable in general. I conclude that computational irreducibility (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations