Switch to: References

Add citations

You must login to add citations.
  1. Constructive Zermelo–Fraenkel set theory and the limited principle of omniscience.Michael Rathjen - 2014 - Annals of Pure and Applied Logic 165 (2):563-572.
    In recent years the question of whether adding the limited principle of omniscience, LPO, to constructive Zermelo–Fraenkel set theory, CZF, increases its strength has arisen several times. As the addition of excluded middle for atomic formulae to CZF results in a rather strong theory, i.e. much stronger than classical Zermelo set theory, it is not obvious that its augmentation by LPO would be proof-theoretically benign. The purpose of this paper is to show that CZF+RDC+LPO has indeed the same strength as (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Epsilon substitution for $$\textit{ID}_1$$ ID 1 via cut-elimination.Henry Towsner - 2018 - Archive for Mathematical Logic 57 (5-6):497-531.
    The \-substitution method is a technique for giving consistency proofs for theories of arithmetic. We use this technique to give a proof of the consistency of the impredicative theory \ using a variant of the cut-elimination formalism introduced by Mints.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof Theory as an Analysis of Impredicativity( New Developments in Logic: Proof-Theoretic Ordinals and Set-Theoretic Ordinals).Ryota Akiyoshi - 2012 - Journal of the Japan Association for Philosophy of Science 39 (2):93-107.
    Download  
     
    Export citation  
     
    Bookmark  
  • An extension of the omega-rule.Ryota Akiyoshi & Grigori Mints - 2016 - Archive for Mathematical Logic 55 (3-4):593-603.
    The Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}-rule was introduced by W. Buchholz to give an ordinal-free proof of cut-elimination for a subsystem of analysis with Π11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Pi ^{1}_{1}$$\end{document}-comprehension. W. Buchholz’s proof provides cut-free derivations by familiar rules only for arithmetical sequents. When second-order quantifiers are present, they are introduced by the Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}-rule and some residual cuts are not (...)
    Download  
     
    Export citation  
     
    Bookmark