Switch to: References

Citations of:

On Rules

Journal of Philosophical Logic 44 (6):697-711 (2015)

Add citations

You must login to add citations.
  1. Supervaluationism, Modal Logic, and Weakly Classical Logic.Joshua Schechter - 2024 - Journal of Philosophical Logic 53 (2):411-61.
    A consequence relation is strongly classical if it has all the theorems and entailments of classical logic as well as the usual meta-rules (such as Conditional Proof). A consequence relation is weakly classical if it has all the theorems and entailments of classical logic but lacks the usual meta-rules. The most familiar example of a weakly classical consequence relation comes from a simple supervaluational approach to modelling vague language. This approach is formally equivalent to an account of logical consequence according (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Expressing logical disagreement from within.Andreas Fjellstad - 2022 - Synthese 200 (2):1-33.
    Against the backdrop of the frequent comparison of theories of truth in the literature on semantic paradoxes with regard to which inferences and metainferences are deemed valid, this paper develops a novel approach to defining a binary predicate for representing the valid inferences and metainferences of a theory within the theory itself under the assumption that the theory is defined with a classical meta-theory. The aim with the approach is to obtain a tool which facilitates the comparison between a theory (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Almost structural completeness; an algebraic approach.Wojciech Dzik & Michał M. Stronkowski - 2016 - Annals of Pure and Applied Logic 167 (7):525-556.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Syntactic Approach to Unification in Transitive Reflexive Modal Logics.Rosalie Iemhoff - 2016 - Notre Dame Journal of Formal Logic 57 (2):233-247.
    This paper contains a proof-theoretic account of unification in transitive reflexive modal logics, which means that the reasoning is syntactic and uses as little semantics as possible. New proofs of theorems on unification types are presented and these results are extended to negationless fragments. In particular, a syntactic proof of Ghilardi’s result that $\mathsf {S4}$ has finitary unification is provided. In this approach the relation between classical valuations, projective unifiers, and admissible rules is clarified.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Preservation of admissible rules when combining logics.João Rasga, Cristina Sernadas & Amílcar Sernadas - 2016 - Review of Symbolic Logic 9 (4):641-663.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Complexity of the Universal Theory of Modal Algebras.Dmitry Shkatov & Clint J. Van Alten - 2020 - Studia Logica 108 (2):221-237.
    We apply the theory of partial algebras, following the approach developed by Van Alten, to the study of the computational complexity of universal theories of monotonic and normal modal algebras. We show how the theory of partial algebras can be deployed to obtain co-NP and EXPTIME upper bounds for the universal theories of, respectively, monotonic and normal modal algebras. We also obtain the corresponding lower bounds, which means that the universal theory of monotonic modal algebras is co-NP-complete and the universal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Complexity of the Universal Theory of Residuated Ordered Groupoids.Dmitry Shkatov & C. J. Van Alten - 2023 - Journal of Logic, Language and Information 32 (3):489-510.
    We study the computational complexity of the universal theory of residuated ordered groupoids, which are algebraic structures corresponding to Nonassociative Lambek Calculus. We prove that the universal theory is co $$\textsf {NP}$$ -complete which, as we observe, is the lowest possible complexity for a universal theory of a non-trivial class of structures. The universal theories of the classes of unital and integral residuated ordered groupoids are also shown to be co $$\textsf {NP}$$ -complete. We also prove the co $$\textsf {NP}$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unification in superintuitionistic predicate logics and its applications.Wojciech Dzik & Piotr Wojtylak - 2019 - Review of Symbolic Logic 12 (1):37-61.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Unification in intermediate logics.Rosalie Iemhoff & Paul Rozière - 2015 - Journal of Symbolic Logic 80 (3):713-729.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computational complexity for bounded distributive lattices with negation.Dmitry Shkatov & C. J. Van Alten - 2021 - Annals of Pure and Applied Logic 172 (7):102962.
    We study the computational complexity of the universal and quasi-equational theories of classes of bounded distributive lattices with a negation operation, i.e., a unary operation satisfying a subset of the properties of the Boolean negation. The upper bounds are obtained through the use of partial algebras. The lower bounds are either inherited from the equational theory of bounded distributive lattices or obtained through a reduction of a global satisfiability problem for a suitable system of propositional modal logic.
    Download  
     
    Export citation  
     
    Bookmark   1 citation