Switch to: References

Add citations

You must login to add citations.
  1. Kripke semantics for provability logic GLP.Lev D. Beklemishev - 2010 - Annals of Pure and Applied Logic 161 (6):756-774.
    A well-known polymodal provability logic inlMMLBox due to Japaridze is complete w.r.t. the arithmetical semantics where modalities correspond to reflection principles of restricted logical complexity in arithmetic. This system plays an important role in some recent applications of provability algebras in proof theory. However, an obstacle in the study of inlMMLBox is that it is incomplete w.r.t. any class of Kripke frames. In this paper we provide a complete Kripke semantics for inlMMLBox . First, we isolate a certain subsystem inlMMLBox (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Provability and Interpretability Logics with Restricted Realizations.Thomas F. Icard & Joost J. Joosten - 2012 - Notre Dame Journal of Formal Logic 53 (2):133-154.
    The provability logic of a theory $T$ is the set of modal formulas, which under any arithmetical realization are provable in $T$. We slightly modify this notion by requiring the arithmetical realizations to come from a specified set $\Gamma$. We make an analogous modification for interpretability logics. We first study provability logics with restricted realizations and show that for various natural candidates of $T$ and restriction set $\Gamma$, the result is the logic of linear frames. However, for the theory Primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Provability logic-a short introduction.Per Lindström - 1996 - Theoria 62 (1-2):19-61.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)PSPACE-decidability of Japaridze's polymodal logic.Ilya Shapirovsky - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 289-304.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the complexity of the closed fragment of Japaridze’s provability logic.Fedor Pakhomov - 2014 - Archive for Mathematical Logic 53 (7-8):949-967.
    We consider the well-known provability logic GLP. We prove that the GLP-provability problem for polymodal formulas without variables is PSPACE-complete. For a number n, let L0n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{n}_0}$$\end{document} denote the class of all polymodal variable-free formulas without modalities ⟨n⟩,⟨n+1⟩,...\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle n \rangle,\langle n+1\rangle,...}$$\end{document}. We show that, for every number n, the GLP-provability problem for formulas from L0n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^{n}_0}$$\end{document} (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Models of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2013 - Journal of Symbolic Logic 78 (2):543-561.
    For any ordinal $\Lambda$, we can define a polymodal logic $\mathsf{GLP}_\Lambda$, with a modality $[\xi]$ for each $\xi < \Lambda$. These represent provability predicates of increasing strength. Although $\mathsf{GLP}_\Lambda$ has no Kripke models, Ignatiev showed that indeed one can construct a Kripke model of the variable-free fragment with natural number modalities, denoted $\mathsf{GLP}^0_\omega$. Later, Icard defined a topological model for $\mathsf{GLP}^0_\omega$ which is very closely related to Ignatiev's. In this paper we show how to extend these constructions for arbitrary $\Lambda$. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Provability logic.Rineke Verbrugge - 2008 - Stanford Encyclopedia of Philosophy.
    -/- Provability logic is a modal logic that is used to investigate what arithmetical theories can express in a restricted language about their provability predicates. The logic has been inspired by developments in meta-mathematics such as Gödel’s incompleteness theorems of 1931 and Löb’s theorem of 1953. As a modal logic, provability logic has been studied since the early seventies, and has had important applications in the foundations of mathematics. -/- From a philosophical point of view, provability logic is interesting because (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Kripke Models of Transfinite Provability Logic.David Fernández-Duque & Joost J. Joosten - 1998 - In Marcus Kracht, Maarten de Rijke, Heinrich Wansing & Michael Zakharyaschev (eds.), Advances in Modal Logic. CSLI Publications. pp. 185-199.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Nested sequents for provability logic GLP: FIG. 1.Daniyar Shamkanov - 2015 - Logic Journal of the IGPL 23 (5):789-815.
    Download  
     
    Export citation  
     
    Bookmark  
  • The polytopologies of transfinite provability logic.David Fernández-Duque - 2014 - Archive for Mathematical Logic 53 (3-4):385-431.
    Provability logics are modal or polymodal systems designed for modeling the behavior of Gödel’s provability predicate and its natural extensions. If Λ is any ordinal, the Gödel-Löb calculus GLPΛ contains one modality [λ] for each λ < Λ, representing provability predicates of increasing strength. GLPω has no non-trivial Kripke frames, but it is sound and complete for its topological semantics, as was shown by Icard for the variable-free fragment and more recently by Beklemishev and Gabelaia for the full logic. In (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Positive provability logic for uniform reflection principles.Lev Beklemishev - 2014 - Annals of Pure and Applied Logic 165 (1):82-105.
    We deal with the fragment of modal logic consisting of implications of formulas built up from the variables and the constant ‘true’ by conjunction and diamonds only. The weaker language allows one to interpret the diamonds as the uniform reflection schemata in arithmetic, possibly of unrestricted logical complexity. We formulate an arithmetically complete calculus with modalities labeled by natural numbers and ω, where ω corresponds to the full uniform reflection schema, whereas n<ω corresponds to its restriction to arithmetical Πn+1-formulas. This (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Topological completeness of the provability logic GLP.Lev Beklemishev & David Gabelaia - 2013 - Annals of Pure and Applied Logic 164 (12):1201-1223.
    Provability logic GLP is well-known to be incomplete w.r.t. Kripke semantics. A natural topological semantics of GLP interprets modalities as derivative operators of a polytopological space. Such spaces are called GLP-spaces whenever they satisfy all the axioms of GLP. We develop some constructions to build nontrivial GLP-spaces and show that GLP is complete w.r.t. the class of all GLP-spaces.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On Provability Logics with Linearly Ordered Modalities.Lev D. Beklemishev, David Fernández-Duque & Joost J. Joosten - 2014 - Studia Logica 102 (3):541-566.
    We introduce the logics GLP Λ, a generalization of Japaridze’s polymodal provability logic GLP ω where Λ is any linearly ordered set representing a hierarchy of provability operators of increasing strength. We shall provide a reduction of these logics to GLP ω yielding among other things a finitary proof of the normal form theorem for the variable-free fragment of GLP Λ and the decidability of GLP Λ for recursive orderings Λ. Further, we give a restricted axiomatization of the variable-free fragment (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Hierarchical Incompleteness Results for Arithmetically Definable Extensions of Fragments of Arithmetic.Rasmus Blanck - 2021 - Review of Symbolic Logic 14 (3):624-644.
    There has been a recent interest in hierarchical generalizations of classic incompleteness results. This paper provides evidence that such generalizations are readily obtainable from suitably formulated hierarchical versions of the principles used in the original proofs. By collecting such principles, we prove hierarchical versions of Mostowski’s theorem on independent formulae, Kripke’s theorem on flexible formulae, Woodin’s theorem on the universal algorithm, and a few related results. As a corollary, we obtain the expected result that the formula expressing “$\mathrm {T}$is$\Sigma _n$-ill” (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The omega-rule interpretation of transfinite provability logic.David Fernández-Duque & Joost J. Joosten - 2018 - Annals of Pure and Applied Logic 169 (4):333-371.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A many-sorted variant of Japaridze’s polymodal provability logic.Gerald Berger, Lev D. Beklemishev & Hans Tompits - 2018 - Logic Journal of the IGPL 26 (5):505-538.
    Download  
     
    Export citation  
     
    Bookmark  
  • Turing–Taylor Expansions for Arithmetic Theories.Joost J. Joosten - 2016 - Studia Logica 104 (6):1225-1243.
    Turing progressions have been often used to measure the proof-theoretic strength of mathematical theories: iterate adding consistency of some weak base theory until you “hit” the target theory. Turing progressions based on n-consistency give rise to a \ proof-theoretic ordinal \ also denoted \. As such, to each theory U we can assign the sequence of corresponding \ ordinals \. We call this sequence a Turing-Taylor expansion or spectrum of a theory. In this paper, we relate Turing-Taylor expansions of sub-theories (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Provability algebras and proof-theoretic ordinals, I.Lev D. Beklemishev - 2004 - Annals of Pure and Applied Logic 128 (1-3):103-123.
    We suggest an algebraic approach to proof-theoretic analysis based on the notion of graded provability algebra, that is, Lindenbaum boolean algebra of a theory enriched by additional operators which allow for the structure to capture proof-theoretic information. We use this method to analyze Peano arithmetic and show how an ordinal notation system up to 0 can be recovered from the corresponding algebra in a canonical way. This method also establishes links between proof-theoretic ordinal analysis and the work which has been (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Predicativity through transfinite reflection.Andrés Cordón-Franco, David Fernández-Duque, Joost J. Joosten & Francisco Félix Lara-martín - 2017 - Journal of Symbolic Logic 82 (3):787-808.
    Let T be a second-order arithmetical theory, Λ a well-order, λ < Λ and X ⊆ ℕ. We use $[\lambda |X]_T^{\rm{\Lambda }}\varphi$ as a formalization of “φ is provable from T and an oracle for the set X, using ω-rules of nesting depth at most λ”.For a set of formulas Γ, define predicative oracle reflection for T over Γ ) to be the schema that asserts that, if X ⊆ ℕ, Λ is a well-order and φ ∈ Γ, then$$\forall \,\lambda (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Gödel’s second incompleteness theorem for Σn-definable theories.Conden Chao & Payam Seraji - 2018 - Logic Journal of the IGPL 26 (2):255-257.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Worms, gaps, and hydras.Lorenzo Carlucci - 2005 - Mathematical Logic Quarterly 51 (4):342-350.
    We define a direct translation from finite rooted trees to finite natural functions which shows that the Worm Principle introduced by Lev Beklemishev is equivalent to a very slight variant of the well-known Kirby-Paris' Hydra Game. We further show that the elements in a reduction sequence of the Worm Principle determine a bad sequence in the well-quasi-ordering of finite sequences of natural numbers with respect to Friedman's gapembeddability. A characterization of gap-embeddability in terms of provability logic due to Lev Beklemishev (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations