Switch to: References

Add citations

You must login to add citations.
  1. Q1-degrees of c.e. sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
    We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q1-degrees linearly ordered under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\leq_{Q_1}}$$\end{document} with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q1-degrees are not an upper semilattice. The main result of this paper is that the Q1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Hyperhypersimple sets and Q1 -reducibility.Irakli Chitaia - 2016 - Mathematical Logic Quarterly 62 (6):590-595.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Strong Enumeration Reducibilities.Roland Sh Omanadze & Andrea Sorbi - 2006 - Archive for Mathematical Logic 45 (7):869-912.
    We investigate strong versions of enumeration reducibility, the most important one being s-reducibility. We prove that every countable distributive lattice is embeddable into the local structure $L(\mathfrak D_s)$ of the s-degrees. However, $L(\mathfrak D_s)$ is not distributive. We show that on $\Delta^{0}_{2}$ sets s-reducibility coincides with its finite branch version; the same holds of e-reducibility. We prove some density results for $L(\mathfrak D_s)$ . In particular $L(\mathfrak D_s)$ is upwards dense. Among the results about reducibilities that are stronger than s-reducibility, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Some structural properties of quasi-degrees.Roland Sh Omanadze - 2018 - Logic Journal of the IGPL 26 (1):191-201.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On speedable and levelable vector spaces.Frank A. Bäuerle & Jeffrey B. Remmel - 1994 - Annals of Pure and Applied Logic 67 (1-3):61-112.
    In this paper, we study the lattice of r.e. subspaces of a recursively presented vector space V ∞ with regard to the various complexity-theoretic speed-up properties such as speedable, effectively speedable, levelable, and effectively levelable introduced by Blum and Marques. In particular, we study the interplay between an r.e. basis A for a subspace V of V ∞ and V with regard to these properties. We show for example that if A or V is speedable , then V is levelable (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Non-empty open intervals of computably enumerable sQ 1-degrees.Roland Omanadze & Irakli Chitaia - forthcoming - Logic Journal of the IGPL.
    We prove that if $A$, $B$ are noncomputable c.e. sets, $A<_{sQ_{1}}B$ and [($B$ is not simple and $A\oplus B\leq _{sQ_{1}}B$) or $B\equiv _{sQ_{1}}B\times \omega $], then there exist infinitely many pairwise $sQ_{1}$-incomparable c.e. sets $\{C_{i}\}_{i\in \omega }$ such that $A<_{sQ_{1}}C_{i}<_{sQ_{1}}B$, for all $i\in \omega $. We also show that there exist infinite collections of $sQ_{1}$-degrees $\{\boldsymbol {a_{i}}\}_{i\in \omega }$ and $\{\boldsymbol {b_{i}}\}_{i\in \omega }$ such that for every $i, j,$ (1) $\boldsymbol {a_{i}}<_{sQ_{1}}\boldsymbol {a_{i+1}}$, $\boldsymbol {b_{j+1}}<_{sQ_{1}}\boldsymbol {b_{j}}$ and $\boldsymbol {a_{i}}<_{sQ_{1}}\boldsymbol {b_{j}}$; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On the Simplicity of Busy Beaver Sets.Robert P. Daley - 1978 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 24 (13-14):207-224.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Immunity properties and strong positive reducibilities.Irakli O. Chitaia, Roland Sh Omanadze & Andrea Sorbi - 2011 - Archive for Mathematical Logic 50 (3-4):341-352.
    We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\rm ss} B}$$\end{document} (respectively, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{K}\not\le_{\overline{\rm s}} B}$$\end{document}): here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\le_{\overline{\rm (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • r‐Maximal sets and Q1,N‐reducibility.Roland Sh Omanadze & Irakli O. Chitaia - 2021 - Mathematical Logic Quarterly 67 (2):138-148.
    We show that if M is an r‐maximal set, A is a major subset of M, B is an arbitrary set and, then. We prove that the c.e. ‐degrees are not dense. We also show that there exist infinite collections of ‐degrees and such that the following hold: (i) for every i, j,, and,(ii) each consists entirely of r‐maximal sets, and(iii) each consists entirely of non‐r‐maximal hyperhypersimple sets.
    Download  
     
    Export citation  
     
    Bookmark  
  • $$sQ_1$$ -degrees of computably enumerable sets.Roland Sh Omanadze - 2023 - Archive for Mathematical Logic 62 (3):401-417.
    We show that the _sQ_-degree of a hypersimple set includes an infinite collection of \(sQ_1\) -degrees linearly ordered under \(\le _{sQ_1}\) with order type of the integers and each c.e. set in these _sQ_-degrees is a hypersimple set. Also, we prove that there exist two c.e. sets having no least upper bound on the \(sQ_1\) -reducibility ordering. We show that the c.e. \(sQ_1\) -degrees are not dense and if _a_ is a c.e. \(sQ_1\) -degree such that \(o_{sQ_1}, then there exist (...)
    Download  
     
    Export citation  
     
    Bookmark