Switch to: References

Add citations

You must login to add citations.
  1. Q1-degrees of c.e. sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
    We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q1-degrees linearly ordered under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\leq_{Q_1}}$$\end{document} with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q1-degrees are not an upper semilattice. The main result of this paper is that the Q1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bounded enumeration reducibility and its degree structure.Daniele Marsibilio & Andrea Sorbi - 2012 - Archive for Mathematical Logic 51 (1-2):163-186.
    We study a strong enumeration reducibility, called bounded enumeration reducibility and denoted by ≤be, which is a natural extension of s-reducibility ≤s. We show that ≤s, ≤be, and enumeration reducibility do not coincide on the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi^0_1}$$\end{document} –sets, and the structure \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{\mathcal{D}_{\rm be}}}$$\end{document} of the be-degrees is not elementarily equivalent to the structure of the s-degrees. We show also that the first order theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Characterization of the $\Delta _{2}^{0}$ Hyperhyperimmune Sets.Roland Sh Omanadze & Andrea Sorbi - 2008 - Journal of Symbolic Logic 73 (4):1407 - 1415.
    Let A be an infinite $\Delta _{2}^{0}$ set and let K be creative: we show that K ≤Q A if and only if K ≤Q1 A. (Here ≤Q denotes Q-reducibility, and ≤Q1 is the subreducibility of ≤Q obtained by requesting that Q-reducibility be provided by a computable function f such that Wf(x) ∩ Wf(y) = ∅, if x ≠ y.) Using this result we prove that A is hyperhyperimmune if and only if no $\Delta _{2}^{0}$ subset B of A is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Some structural properties of quasi-degrees.Roland Sh Omanadze - 2018 - Logic Journal of the IGPL 26 (1):191-201.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The structure of the s -degrees contained within a single e -degree.Thomas F. Kent - 2009 - Annals of Pure and Applied Logic 160 (1):13-21.
    For any enumeration degree let be the set of s-degrees contained in . We answer an open question of Watson by showing that if is a nontrivial -enumeration degree, then has no least element. We also show that every countable partial order embeds into . Finally, we construct -sets A and B such that B≤eA but for every X≡eB, XsA.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Goodness in the enumeration and singleton degrees.Charles M. Harris - 2010 - Archive for Mathematical Logic 49 (6):673-691.
    We investigate and extend the notion of a good approximation with respect to the enumeration ${({\mathcal D}_{\rm e})}$ and singleton ${({\mathcal D}_{\rm s})}$ degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings ${\iota_s}$ and ${\hat{\iota}_s}$ of, respectively, ${{\mathcal D}_{\rm e}}$ and ${{\mathcal D}_{\rm T}}$ (the Turing degrees) into (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Non-empty open intervals of computably enumerable sQ 1-degrees.Roland Omanadze & Irakli Chitaia - forthcoming - Logic Journal of the IGPL.
    We prove that if $A$, $B$ are noncomputable c.e. sets, $A<_{sQ_{1}}B$ and [($B$ is not simple and $A\oplus B\leq _{sQ_{1}}B$) or $B\equiv _{sQ_{1}}B\times \omega $], then there exist infinitely many pairwise $sQ_{1}$-incomparable c.e. sets $\{C_{i}\}_{i\in \omega }$ such that $A<_{sQ_{1}}C_{i}<_{sQ_{1}}B$, for all $i\in \omega $. We also show that there exist infinite collections of $sQ_{1}$-degrees $\{\boldsymbol {a_{i}}\}_{i\in \omega }$ and $\{\boldsymbol {b_{i}}\}_{i\in \omega }$ such that for every $i, j,$ (1) $\boldsymbol {a_{i}}<_{sQ_{1}}\boldsymbol {a_{i+1}}$, $\boldsymbol {b_{j+1}}<_{sQ_{1}}\boldsymbol {b_{j}}$ and $\boldsymbol {a_{i}}<_{sQ_{1}}\boldsymbol {b_{j}}$; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • r‐Maximal sets and Q1,N‐reducibility.Roland Sh Omanadze & Irakli O. Chitaia - 2021 - Mathematical Logic Quarterly 67 (2):138-148.
    We show that if M is an r‐maximal set, A is a major subset of M, B is an arbitrary set and, then. We prove that the c.e. ‐degrees are not dense. We also show that there exist infinite collections of ‐degrees and such that the following hold: (i) for every i, j,, and,(ii) each consists entirely of r‐maximal sets, and(iii) each consists entirely of non‐r‐maximal hyperhypersimple sets.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the bounded quasi‐degrees of c.e. sets.Roland Sh Omanadze - 2013 - Mathematical Logic Quarterly 59 (3):238-246.
    Download  
     
    Export citation  
     
    Bookmark  
  • $$sQ_1$$ -degrees of computably enumerable sets.Roland Sh Omanadze - 2023 - Archive for Mathematical Logic 62 (3):401-417.
    We show that the _sQ_-degree of a hypersimple set includes an infinite collection of \(sQ_1\) -degrees linearly ordered under \(\le _{sQ_1}\) with order type of the integers and each c.e. set in these _sQ_-degrees is a hypersimple set. Also, we prove that there exist two c.e. sets having no least upper bound on the \(sQ_1\) -reducibility ordering. We show that the c.e. \(sQ_1\) -degrees are not dense and if _a_ is a c.e. \(sQ_1\) -degree such that \(o_{sQ_1}, then there exist (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Incomparability in local structures of s -degrees and Q -degrees.Irakli Chitaia, Keng Meng Ng, Andrea Sorbi & Yue Yang - 2020 - Archive for Mathematical Logic 59 (7-8):777-791.
    We show that for every intermediate \ s-degree there exists an incomparable \ s-degree. As a consequence, for every intermediate \ Q-degree there exists an incomparable \ Q-degree. We also show how these results can be applied to provide proofs or new proofs of upper density results in local structures of s-degrees and Q-degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation