Switch to: References

Add citations

You must login to add citations.
  1. Elementary-base cirquent calculus II: Choice quantifiers.Giorgi Japaridze - forthcoming - Logic Journal of the IGPL.
    Cirquent calculus is a novel proof theory permitting component-sharing between logical expressions. Using it, the predecessor article ‘Elementary-base cirquent calculus I: Parallel and choice connectives’ built the sound and complete axiomatization $\textbf{CL16}$ of a propositional fragment of computability logic. The atoms of the language of $\textbf{CL16}$ represent elementary, i.e. moveless, games and the logical vocabulary consists of negation, parallel connectives and choice connectives. The present paper constructs the first-order version $\textbf{CL17}$ of $\textbf{CL16}$, also enjoying soundness and completeness. The language of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Parallel versus Branching Recurrences in Computability Logic.Wenyan Xu & Sanyang Liu - 2013 - Notre Dame Journal of Formal Logic 54 (1):61-78.
    This paper shows that the basic logic induced by the parallel recurrence $\hspace {-2pt}\mbox {\raisebox {-0.01pt}{\@setfontsize \small {7}{8}$\wedge$}\hspace {-3.55pt}\raisebox {4.5pt}{\tiny $\mid$}\hspace {2pt}}$ of computability logic (i.e., the one in the signature $\{\neg,$\wedge$,\vee,\hspace {-2pt}\mbox {\raisebox {-0.01pt}{\@setfontsize \small {7}{8}$\wedge$}\hspace {-3.55pt}\raisebox {4.5pt}{\tiny $\mid$}\hspace {2pt}},\hspace {-2pt}\mbox {\raisebox {0.12cm}{\@setfontsize \small {7}{8}$\vee$}\hspace {-3.6pt}\raisebox {0.02cm}{\tiny $\mid$}\hspace {2pt}}\}$ ) is a proper superset of the basic logic induced by the branching recurrence $\mbox {\raisebox {-0.05cm}{$\circ$}\hspace {-0.11cm}\raisebox {3.1pt}{\tiny $\mid$}\hspace {2pt}}$ (i.e., the one in the signature $\{\neg,$\wedge$,\vee,\mbox {\raisebox {-0.05cm}{$\circ$}\hspace {-0.11cm}\raisebox (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The taming of recurrences in computability logic through cirquent calculus, Part II.Giorgi Japaridze - 2013 - Archive for Mathematical Logic 52 (1-2):213-259.
    This paper constructs a cirquent calculus system and proves its soundness and completeness with respect to the semantics of computability logic. The logical vocabulary of the system consists of negation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\neg}}$$\end{document}, parallel conjunction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\wedge}}$$\end{document}, parallel disjunction \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\vee}}$$\end{document}, branching recurrence ⫰, and branching corecurrence ⫯. The article is published in two parts, with (the previous) (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations