Switch to: References

Add citations

You must login to add citations.
  1. Commutative integral bounded residuated lattices with an added involution.Roberto Cignoli & Francesc Esteva - 2010 - Annals of Pure and Applied Logic 161 (2):150-160.
    A symmetric residuated lattice is an algebra such that is a commutative integral bounded residuated lattice and the equations x=x and =xy are satisfied. The aim of the paper is to investigate the properties of the unary operation ε defined by the prescription εx=x→0. We give necessary and sufficient conditions for ε being an interior operator. Since these conditions are rather restrictive →0)=1 is satisfied) we consider when an iteration of ε is an interior operator. In particular we consider the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties.Francesc Esteva, Lluís Godo & Carles Noguera - 2010 - Annals of Pure and Applied Logic 161 (2):185-202.
    This paper aims at being a systematic investigation of different completeness properties of first-order predicate logics with truth-constants based on a large class of left-continuous t-norms . We consider standard semantics over the real unit interval but also we explore alternative semantics based on the rational unit interval and on finite chains. We prove that expansions with truth-constants are conservative and we study their real, rational and finite chain completeness properties. Particularly interesting is the case of considering canonical real and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the reflection invariance of residuated chains.Sándor Jenei - 2010 - Annals of Pure and Applied Logic 161 (2):220-227.
    It is shown that, under certain conditions, a subset of the graph of a commutative residuated chain is invariant under a geometric reflection. This result implies that a certain part of the graph of the monoidal operation of a commutative residuated chain determines another part of the graph via the reflection on one hand, and tells us about the structure of continuity points of the monoidal operation on the other. Finally, these results are applied for the subdomains of uniqueness problem, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Standard completeness theorem for ΠMTL.Rostislav Horĉík - 2005 - Archive for Mathematical Logic 44 (4):413-424.
    Abstract.ΠMTL is a schematic extension of the monoidal t-norm based logic (MTL) by the characteristic axioms of product logic. In this paper we prove that ΠMTL satisfies the standard completeness theorem. From the algebraic point of view, we show that the class of ΠMTL-algebras (bounded commutative cancellative residuated l-monoids) in the real unit interval [0,1] generates the variety of all ΠMTL-algebras.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On elementary equivalence in fuzzy predicate logics.Pilar Dellunde & Francesc Esteva - 2013 - Archive for Mathematical Logic 52 (1-2):1-17.
    Our work is a contribution to the model theory of fuzzy predicate logics. In this paper we characterize elementary equivalence between models of fuzzy predicate logic using elementary mappings. Refining the method of diagrams we give a solution to an open problem of Hájek and Cintula (J Symb Log 71(3):863–880, 2006, Conjectures 1 and 2). We investigate also the properties of elementary extensions in witnessed and quasi-witnessed theories, generalizing some results of Section 7 of Hájek and Cintula (J Symb Log (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Free Algebras in Varieties of Glivenko MTL-Algebras Satisfying the Equation 2(x²) = (2x)².Roberto Cignoli & Antoni Torrens Torrell - 2006 - Studia Logica 83 (1-3):157 - 181.
    The aim of this paper is to give a description of the free algebras in some varieties of Glivenko MTL-algebras having the Boolean retraction property. This description is given (generalizing the results of [9]) in terms of weak Boolean products over Cantor spaces. We prove that in some cases the stalks can be obtained in a constructive way from free kernel DL-algebras, which are the maximal radical of directly indecomposable Glivenko MTL-algebras satisfying the equation in the title. We include examples (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Forcing operators on MTL-algebras.George Georgescu & Denisa Diaconescu - 2011 - Mathematical Logic Quarterly 57 (1):47-64.
    We study the forcing operators on MTL-algebras, an algebraic notion inspired by the Kripke semantics of the monoidal t -norm based logic . At logical level, they provide the notion of the forcing value of an MTL-formula. We characterize the forcing operators in terms of some MTL-algebras morphisms. From this result we derive the equality of the forcing value and the truth value of an MTL-formula.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fuzzy logic.Petr Hajek - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Monadic NM-algebras.Juntao Wang, Pengfei He & Yanhong She - 2019 - Logic Journal of the IGPL 27 (6):812-835.
    In this paper, we investigate universal and existential quantifiers on NM-algebras. The resulting class of algebras will be called monadic NM-algebras. First, we show that the variety of monadic NM-algebras is algebraic semantics of the monadic NM-predicate logic. Moreover, we discuss the relationship among monadic NM-algebras, modal NM-algebras and rough approximation spaces. Second, we introduce and investigate monadic filters in monadic NM-algebras. Using them, we prove the subdirect representation theorem of monadic NM-algebras, and characterize simple and subdirectly irreducible monadic NM-algebras. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A logical framework for graded predicates.Petr Cintula, Carles Noguera & Nicholas J. J. Smith - 2017 - In Alexandru Baltag, Jeremy Seligman & Tomoyuki Yamada (eds.), Logic, Rationality, and Interaction. Springer. pp. 3-16.
    In this position paper we present a logical framework for modelling reasoning with graded predicates. We distinguish several types of graded predicates and discuss their ubiquity in rational interaction and the logical challenges they pose. We present mathematical fuzzy logic as a set of logical tools that can be used to model reasoning with graded predicates, and discuss a philosophical account of vagueness that makes use of these tools. This approach is then generalized to other kinds of graded predicates. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Formal systems of fuzzy logic and their fragments.Petr Cintula, Petr Hájek & Rostislav Horčík - 2007 - Annals of Pure and Applied Logic 150 (1-3):40-65.
    Formal systems of fuzzy logic are well-established logical systems and respected members of the broad family of the so-called substructural logics closely related to the famous logic BCK. The study of fragments of logical systems is an important issue of research in any class of non-classical logics. Here we study the fragments of nine prominent fuzzy logics to all sublanguages containing implication. However, the results achieved in the paper for those nine logics are usually corollaries of theorems with much wider (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Arithmetical complexity of fuzzy predicate logics—a survey II.Petr Hájek - 2010 - Annals of Pure and Applied Logic 161 (2):212-219.
    Results on arithmetical complexity of important sets of formulas of several fuzzy predicate logics are surveyed and some new results are proven.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical fuzzy logics.Siegfried Gottwald - 2008 - Bulletin of Symbolic Logic 14 (2):210-239.
    The last decade has seen an enormous development in infinite-valued systems and in particular in such systems which have become known as mathematical fuzzy logics. The paper discusses the mathematical background for the interest in such systems of mathematical fuzzy logics, as well as the most important ones of them. It concentrates on the propositional cases, and mentions the first-order systems more superficially. The main ideas, however, become clear already in this restricted setting.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the standard and rational completeness of some axiomatic extensions of the monoidal t-Norm logic.Francesc Esteva, Joan Gispert, Lluís Godo & Franco Montagna - 2002 - Studia Logica 71 (2):199 - 226.
    The monoidal t-norm based logic MTL is obtained from Hájek''s Basic Fuzzy logic BL by dropping the divisibility condition for the strong (or monoidal) conjunction. Recently, Jenei and Montgana have shown MTL to be standard complete, i.e. complete with respect to the class of residuated lattices in the real unit interval [0,1] defined by left-continuous t-norms and their residua. Its corresponding algebraic semantics is given by pre-linear residuated lattices. In this paper we address the issue of standard and rational completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Involutive Uninorm Logic with Fixed Point enjoys finite strong standard completeness.Sándor Jenei - 2022 - Archive for Mathematical Logic 62 (1):67-86.
    An algebraic proof is presented for the finite strong standard completeness of the Involutive Uninorm Logic with Fixed Point ($${{\mathbf {IUL}}^{fp}}$$ IUL fp ). It may provide a first step towards settling the standard completeness problem for the Involutive Uninorm Logic ($${\mathbf {IUL}}$$ IUL, posed in G. Metcalfe, F. Montagna. (J Symb Log 72:834–864, 2007)) in an algebraic manner. The result is proved via an embedding theorem which is based on the structural description of the class of odd involutive FL$$_e$$ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonassociative substructural logics and their semilinear extensions: Axiomatization and completeness properties: Nonassociative substructural logics.Petr Cintula, Rostislav Horčík & Carles Noguera - 2013 - Review of Symbolic Logic 6 (3):394-423.
    Substructural logics extending the full Lambek calculus FL have largely benefited from a systematical algebraic approach based on the study of their algebraic counterparts: residuated lattices. Recently, a nonassociative generalization of FL has been studied by Galatos and Ono as the logic of lattice-ordered residuated unital groupoids. This paper is based on an alternative Hilbert-style presentation for SL which is almost MP -based. This presentation is then used to obtain, in a uniform way applicable to most substructural logics, a form (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Kripke-style semantics for many-valued logics.Franco Montagna & Lorenzo Sacchetti - 2003 - Mathematical Logic Quarterly 49 (6):629.
    This paper deals with Kripke-style semantics for many-valued logics. We introduce various types of Kripke semantics, and we connect them with algebraic semantics. As for modal logics, we relate the axioms of logics extending MTL to properties of the Kripke frames in which they are valid. We show that in the propositional case most logics are complete but not strongly complete with respect to the corresponding class of complete Kripke frames, whereas in the predicate case there are important many-valued logics (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Applications of ultraproducts: from compactness to fuzzy elementary classes.P. Dellunde - 2014 - Logic Journal of the IGPL 22 (1):166-180.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Franco Montagna’s Work on Provability Logic and Many-valued Logic.Lev Beklemishev & Tommaso Flaminio - 2016 - Studia Logica 104 (1):1-46.
    Franco Montagna, a prominent logician and one of the leaders of the Italian school on Mathematical Logic, passed away on February 18, 2015. We survey some of his results and ideas in the two disciplines he greatly contributed along his career: provability logic and many-valued logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Algebraic Proof of Completeness for Monadic Fuzzy Predicate Logic.Jun Tao Wang & Hongwei Wu - forthcoming - Review of Symbolic Logic:1-27.
    Monoidal t-norm based logic $\mathbf {MTL}$ is the weakest t-norm based residuated fuzzy logic, which is a $[0,1]$ -valued propositional logical system having a t-norm and its residuum as truth function for conjunction and implication. Monadic fuzzy predicate logic $\mathbf {mMTL\forall }$ that consists of the formulas with unary predicates and just one object variable, is the monadic fragment of fuzzy predicate logic $\mathbf {MTL\forall }$, which is indeed the predicate version of monoidal t-norm based logic $\mathbf {MTL}$. The main (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kripke semantics, undecidability and standard completeness for Esteva and Godo's logic MTL∀.Franco Montagna & Hiroakira Ono - 2002 - Studia Logica 71 (2):227-245.
    The present paper deals with the predicate version MTL of the logic MTL by Esteva and Godo. We introduce a Kripke semantics for it, along the lines of Ono''s Kripke semantics for the predicate version of FLew (cf. [O85]), and we prove a completeness theorem. Then we prove that every predicate logic between MTL and classical predicate logic is undecidable. Finally, we prove that MTL is complete with respect to the standard semantics, i.e., with respect to Kripke frames on the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On triangular norm based axiomatic extensions of the weak nilpotent minimum logic.Carles Noguera, Francesc Esteva & Joan Gispert - 2008 - Mathematical Logic Quarterly 54 (4):387-409.
    In this paper we carry out an algebraic investigation of the weak nilpotent minimum logic and its t-norm based axiomatic extensions. We consider the algebraic counterpart of WNM, the variety of WNM-algebras and prove that it is locally finite, so all its subvarieties are generated by finite chains. We give criteria to compare varieties generated by finite families of WNM-chains, in particular varieties generated by standard WNM-chains, or equivalently t-norm based axiomatic extensions of WNM, and we study their standard completeness (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A classification of certain group-like FL $$_e$$ e -chains.Sándor Jenei & Franco Montagna - 2015 - Synthese 192 (7):2095-2121.
    Classification of certain group-like FL $_e$ -chains is given: We define absorbent-continuity of FL $_e$ -algebras, along with the notion of subreal chains, and classify absorbent-continuous, group-like FL $_e$ -algebras over subreal chains: The algebra is determined by its negative cone, and the negative cone can only be chosen from a certain subclass of BL-chains, namely, one with components which are either cancellative (that is, those components are negative cones of totally ordered Abelian groups) or two-element MV-algebras, and with no (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On n -contractive fuzzy logics.Rostislav Horčík, Carles Noguera & Milan Petrík - 2007 - Mathematical Logic Quarterly 53 (3):268-288.
    It is well known that MTL satisfies the finite embeddability property. Thus MTL is complete w. r. t. the class of all finite MTL-chains. In order to reach a deeper understanding of the structure of this class, we consider the extensions of MTL by adding the generalized contraction since each finite MTL-chain satisfies a form of this generalized contraction. Simultaneously, we also consider extensions of MTL by the generalized excluded middle laws introduced in [9] and the axiom of weak cancellation (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Distinguished algebraic semantics for t -norm based fuzzy logics: Methods and algebraic equivalencies.Petr Cintula, Francesc Esteva, Joan Gispert, Lluís Godo, Franco Montagna & Carles Noguera - 2009 - Annals of Pure and Applied Logic 160 (1):53-81.
    This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and Δ-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics–namely the class of algebras defined over the real unit (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Strict core fuzzy logics and quasi-witnessed models.Marco Cerami & Francesc Esteva - 2011 - Archive for Mathematical Logic 50 (5-6):625-641.
    In this paper we prove strong completeness of axiomatic extensions of first-order strict core fuzzy logics with the so-called quasi-witnessed axioms with respect to quasi-witnessed models. As a consequence we obtain strong completeness of Product Predicate Logic with respect to quasi-witnessed models, already proven by M.C. Laskowski and S. Malekpour in [19]. Finally we study similar problems for expansions with Δ, define Δ-quasi-witnessed axioms and prove that any axiomatic extension of a first-order strict core fuzzy logic, expanded with Δ, and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation