Switch to: References

Add citations

You must login to add citations.
  1. Finding the limit of incompleteness I.Yong Cheng - 2020 - Bulletin of Symbolic Logic 26 (3-4):268-286.
    In this paper, we examine the limit of applicability of Gödel’s first incompleteness theorem. We first define the notion “$\textsf {G1}$ holds for the theory $T$”. This paper is motivated by the following question: can we find a theory with a minimal degree of interpretation for which $\textsf {G1}$ holds. To approach this question, we first examine the following question: is there a theory T such that Robinson’s $\mathbf {R}$ interprets T but T does not interpret $\mathbf {R}$ and $\textsf (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Current Research on Gödel’s Incompleteness Theorems.Yong Cheng - 2021 - Bulletin of Symbolic Logic 27 (2):113-167.
    We give a survey of current research on Gödel’s incompleteness theorems from the following three aspects: classifications of different proofs of Gödel’s incompleteness theorems, the limit of the applicability of Gödel’s first incompleteness theorem, and the limit of the applicability of Gödel’s second incompleteness theorem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A note on uniform density in weak arithmetical theories.Duccio Pianigiani & Andrea Sorbi - 2020 - Archive for Mathematical Logic 60 (1):211-225.
    Answering a question raised by Shavrukov and Visser :569–582, 2014), we show that the lattice of \-sentences ) over any computable enumerable consistent extension T of \ is uniformly dense. We also show that for every \ and \ refer to the known hierarchies of arithmetical formulas introduced by Burr for intuitionistic arithmetic) the lattices of \-sentences over any c.e. consistent extension T of the intuitionistic version of Robinson Arithmetic \ are uniformly dense. As an immediate consequence of the proof, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Weak essentially undecidable theories of concatenation.Juvenal Murwanashyaka - 2022 - Archive for Mathematical Logic 61 (7):939-976.
    In the language \(\lbrace 0, 1, \circ, \preceq \rbrace \), where 0 and 1 are constant symbols, \(\circ \) is a binary function symbol and \(\preceq \) is a binary relation symbol, we formulate two theories, \( \textsf {WD} \) and \( {\textsf {D}}\), that are mutually interpretable with the theory of arithmetic \( {\textsf {R}} \) and Robinson arithmetic \({\textsf {Q}} \), respectively. The intended model of \( \textsf {WD} \) and \( {\textsf {D}}\) is the free semigroup generated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation