Switch to: References

Citations of:

Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism

In Douglas Jesseph & Ursula Goldenbaum (eds.), Infinitesimal Differences: Controversies Between Leibniz and His Contemporaries. Walter de Gruyter (2008)

Add citations

You must login to add citations.
  1. Fiction, possibility and impossibility: three kinds of mathematical fictions in Leibniz’s work.Oscar M. Esquisabel & Federico Raffo Quintana - 2021 - Archive for History of Exact Sciences 75 (6):613-647.
    This paper is concerned with the status of mathematical fictions in Leibniz’s work and especially with infinitary quantities as fictions. Thus, it is maintained that mathematical fictions constitute a kind of symbolic notion that implies various degrees of impossibility. With this framework, different kinds of notions of possibility and impossibility are proposed, reviewing the usual interpretation of both modal concepts, which appeals to the consistency property. Thus, three concepts of the possibility/impossibility pair are distinguished; they give rise, in turn, to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Presupposition, Aggregation, and Leibniz’s Argument for a Plurality of Substances.Richard T. W. Arthur - 2011 - The Leibniz Review 21:91-115.
    This paper consists in a study of Leibniz’s argument for the infinite plurality of substances, versions of which recur throughout his mature corpus. It goes roughly as follows: since every body is actually divided into further bodies, it is therefore not a unity but an infinite aggregate; the reality of an aggregate, however, reduces to the reality of the unities it presupposes; the reality of body, therefore, entails an actual infinity of constituent unities everywhere in it. I argue that this (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Leibniz’s syncategorematic infinitesimals.Richard T. W. Arthur - 2013 - Archive for History of Exact Sciences 67 (5):553-593.
    In contrast with some recent theories of infinitesimals as non-Archimedean entities, Leibniz’s mature interpretation was fully in accord with the Archimedean Axiom: infinitesimals are fictions, whose treatment as entities incomparably smaller than finite quantities is justifiable wholly in terms of variable finite quantities that can be taken as small as desired, i.e. syncategorematically. In this paper I explain this syncategorematic interpretation, and how Leibniz used it to justify the calculus. I then compare it with the approach of Smooth Infinitesimal Analysis, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics.Vladimir Kanovei, Mikhail G. Katz & Thomas Mormann - 2013 - Foundations of Science 18 (2):259-296.
    We examine some of Connes’ criticisms of Robinson’s infinitesimals starting in 1995. Connes sought to exploit the Solovay model S as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In S , all definable sets of reals are (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Three Infinities in Early Modern Philosophy.Anat Schechtman - 2019 - Mind 128 (512):1117-1147.
    Many historical and philosophical studies treat infinity as an exclusively quantitative notion, whose proper domain of application is mathematics and physics. The main aim of this paper is to disentangle, by critically examining, three notions of infinity in the early modern period, and to argue that one—but only one—of them is quantitative. One of these non-quantitative notions concerns being or reality, while the other concerns a particular iterative property of an aggregate. These three notions will emerge through examination of three (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Labyrinth of Continua.Patrick Reeder - 2018 - Philosophia Mathematica 26 (1):1-39.
    This is a survey of the concept of continuity. Efforts to explicate continuity have produced a plurality of philosophical conceptions of continuity that have provably distinct expressions within contemporary mathematics. I claim that there is a divide between the conceptions that treat the whole continuum as prior to its parts, and those conceptions that treat the parts of the continuum as prior to the whole. Along this divide, a tension emerges between those conceptions that favor philosophical idealizations of continuity and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Leibniz’s syncategorematic infinitesimals II: their existence, their use and their role in the justification of the differential calculus.David Rabouin & Richard T. W. Arthur - 2020 - Archive for History of Exact Sciences 74 (5):401-443.
    In this paper, we endeavour to give a historically accurate presentation of how Leibniz understood his infinitesimals, and how he justified their use. Some authors claim that when Leibniz called them “fictions” in response to the criticisms of the calculus by Rolle and others at the turn of the century, he had in mind a different meaning of “fiction” than in his earlier work, involving a commitment to their existence as non-Archimedean elements of the continuum. Against this, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What Does God Know but can’t Say? Leibniz on Infinity, Fictitious Infinitesimals and a Possible Solution of the Labyrinth of Freedom.Elad Lison - 2020 - Philosophia 48 (1):261-288.
    Despite his commitment to freedom, Leibniz’ philosophy is also founded on pre-established harmony. Understanding the life of the individual as a spiritual automaton led Leibniz to refer to the puzzle of the way out of determinism as the Labyrinth of Freedom. Leibniz claimed that infinite complexity is the reason why it is impossible to prove a contingent truth. But by means of Leibniz’ calculus, it actually can be shown in a finite number of steps how to calculate a summation of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Leibniz on Infinite Numbers, Infinite Wholes, and Composite Substances.Adam Harmer - 2014 - British Journal for the History of Philosophy 22 (2):236-259.
    Leibniz claims that nature is actually infinite but rejects infinite number. Are his mathematical commitments out of step with his metaphysical ones? It is widely accepted that Leibniz has a viable response to this problem: there can be infinitely many created substances, but no infinite number of them. But there is a second problem that has not been satisfactorily resolved. It has been suggested that Leibniz’s argument against the world soul relies on his rejection of infinite number, and, as such, (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations