Switch to: References

Add citations

You must login to add citations.
  1. In defense of Countabilism.David Builes & Jessica M. Wilson - 2022 - Philosophical Studies 179 (7):2199-2236.
    Inspired by Cantor's Theorem (CT), orthodoxy takes infinities to come in different sizes. The orthodox view has had enormous influence in mathematics, philosophy, and science. We will defend the contrary view---Countablism---according to which, necessarily, every infinite collection (set or plurality) is countable. We first argue that the potentialist or modal strategy for treating Russell's Paradox, first proposed by Parsons (2000) and developed by Linnebo (2010, 2013) and Linnebo and Shapiro (2019), should also be applied to CT, in a way that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Term Models for Abstraction Principles.Leon Horsten & Øystein Linnebo - 2016 - Journal of Philosophical Logic 45 (1):1-23.
    Kripke’s notion of groundedness plays a central role in many responses to the semantic paradoxes. Can the notion of groundedness be brought to bear on the paradoxes that arise in connection with abstraction principles? We explore a version of grounded abstraction whereby term models are built up in a ‘grounded’ manner. The results are mixed. Our method solves a problem concerning circularity and yields a ‘grounded’ model for the predicative theory based on Frege’s Basic Law V. However, the method is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Comparing Peano arithmetic, Basic Law V, and Hume’s Principle.Sean Walsh - 2012 - Annals of Pure and Applied Logic 163 (11):1679-1709.
    This paper presents new constructions of models of Hume's Principle and Basic Law V with restricted amounts of comprehension. The techniques used in these constructions are drawn from hyperarithmetic theory and the model theory of fields, and formalizing these techniques within various subsystems of second-order Peano arithmetic allows one to put upper and lower bounds on the interpretability strength of these theories and hence to compare these theories to the canonical subsystems of second-order arithmetic. The main results of this paper (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Predicative fragments of Frege arithmetic.Øystein Linnebo - 2004 - Bulletin of Symbolic Logic 10 (2):153-174.
    Frege Arithmetic (FA) is the second-order theory whose sole non-logical axiom is Hume’s Principle, which says that the number of F s is identical to the number of Gs if and only if the F s and the Gs can be one-to-one correlated. According to Frege’s Theorem, FA and some natural definitions imply all of second-order Peano Arithmetic. This paper distinguishes two dimensions of impredicativity involved in FA—one having to do with Hume’s Principle, the other, with the underlying second-order logic—and (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Amending Frege’s Grundgesetze der Arithmetik.Fernando Ferreira - 2005 - Synthese 147 (1):3-19.
    Frege’s Grundgesetze der Arithmetik is formally inconsistent. This system is, except for minor differences, second-order logic together with an abstraction operator governed by Frege’s Axiom V. A few years ago, Richard Heck showed that the ramified predicative second-order fragment of the Grundgesetze is consistent. In this paper, we show that the above fragment augmented with the axiom of reducibility for concepts true of only finitely many individuals is still consistent, and that elementary Peano arithmetic (and more) is interpretable in this (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Frege's Other Program.Aldo Antonelli & Robert May - 2005 - Notre Dame Journal of Formal Logic 46 (1):1-17.
    Frege's logicist program requires that arithmetic be reduced to logic. Such a program has recently been revamped by the "neologicist" approach of Hale and Wright. Less attention has been given to Frege's extensionalist program, according to which arithmetic is to be reconstructed in terms of a theory of extensions of concepts. This paper deals just with such a theory. We present a system of second-order logic augmented with a predicate representing the fact that an object x is the extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Abstraction Reconceived.J. P. Studd - 2016 - British Journal for the Philosophy of Science 67 (2):579-615.
    Neologicists have sought to ground mathematical knowledge in abstraction. One especially obstinate problem for this account is the bad company problem. The leading neologicist strategy for resolving this problem is to attempt to sift the good abstraction principles from the bad. This response faces a dilemma: the system of ‘good’ abstraction principles either falls foul of the Scylla of inconsistency or the Charybdis of being unable to recover a modest portion of Zermelo–Fraenkel set theory with its intended generality. This article (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Introduction to Special Issue: Reconsidering Frege's Conception of Number.Erich H. Reck & Roy T. Cook - 2016 - Philosophia Mathematica 24 (1):1-8.
    Download  
     
    Export citation  
     
    Bookmark  
  • Is Frege's Definition of the Ancestral Adequate?Richard G. Heck - 2016 - Philosophia Mathematica 24 (1):91-116.
    Why should one think Frege's definition of the ancestral correct? It can be proven to be extensionally correct, but the argument uses arithmetical induction, and that seems to undermine Frege's claim to have justified induction in purely logical terms. I discuss such circularity objections and then offer a new definition of the ancestral intended to be intensionally correct; its extensional correctness then follows without proof. This new definition can be proven equivalent to Frege's without any use of arithmetical induction. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Book Review: Kit Fine. The Limits of Abstraction. [REVIEW]John P. Burgess - 2003 - Notre Dame Journal of Formal Logic 44 (4):227-251.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Julius Caesar and Basic Law V.Richard G. Heck - 2005 - Dialectica 59 (2):161–178.
    This paper dates from about 1994: I rediscovered it on my hard drive in the spring of 2002. It represents an early attempt to explore the connections between the Julius Caesar problem and Frege's attitude towards Basic Law V. Most of the issues discussed here are ones treated rather differently in my more recent papers "The Julius Caesar Objection" and "Grundgesetze der Arithmetik I 10". But the treatment here is more accessible, in many ways, providing more context and a better (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Neo-Fregeanism: An Embarrassment of Riches.Alan Weir - 2003 - Notre Dame Journal of Formal Logic 44 (1):13-48.
    Neo-Fregeans argue that substantial mathematics can be derived from a priori abstraction principles, Hume's Principle connecting numerical identities with one:one correspondences being a prominent example. The embarrassment of riches objection is that there is a plurality of consistent but pairwise inconsistent abstraction principles, thus not all consistent abstractions can be true. This paper considers and criticizes various further criteria on acceptable abstractions proposed by Wright settling on another one—stability—as the best bet for neo-Fregeans. However, an analogue of the embarrassment of (...)
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Plural Grundgesetze.Francesca Boccuni - 2010 - Studia Logica 96 (2):315-330.
    PG (Plural Grundgesetze) is a predicative monadic second-order system which exploits the notion of plural quantification and a few Fregean devices, among which a formulation of the infamous Basic Law V. It is shown that second-order Peano arithmetic can be derived in PG. I also investigate the philosophical issue of predicativism connected to PG. In particular, as predicativism about concepts seems rather un-Fregean, I analyse whether there is a way to make predicativism compatible with Frege’s logicism.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Grundgesetze der Arithmetik I §§29‒32.Richard G. Heck - 1997 - Notre Dame Journal of Formal Logic 38 (3):437-474.
    Frege's intention in section 31 of Grundgesetze is to show that every well-formed expression in his formal system denotes. But it has been obscure why he wants to do this and how he intends to do it. It is argued here that, in large part, Frege's purpose is to show that the smooth breathing, from which names of value-ranges are formed, denotes; that his proof that his other primitive expressions denote is sound and anticipates Tarski's theory of truth; and that (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Frege, Boolos, and logical objects.David J. Anderson & Edward N. Zalta - 2004 - Journal of Philosophical Logic 33 (1):1-26.
    In this paper, the authors discuss Frege's theory of "logical objects" and the recent attempts to rehabilitate it. We show that the 'eta' relation George Boolos deployed on Frege's behalf is similar, if not identical, to the encoding mode of predication that underlies the theory of abstract objects. Whereas Boolos accepted unrestricted Comprehension for Properties and used the 'eta' relation to assert the existence of logical objects under certain highly restricted conditions, the theory of abstract objects uses unrestricted Comprehension for (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Explicit Abstract Objects in Predicative Settings.Sean Ebels-Duggan & Francesca Boccuni - 2024 - Journal of Philosophical Logic 53 (5):1347-1382.
    Abstractionist programs in the philosophy of mathematics have focused on abstraction principles, taken as implicit definitions of the objects in the range of their operators. In second-order logic (SOL) with predicative comprehension, such principles are consistent but also (individually) mathematically weak. This paper, inspired by the work of Boolos (Proceedings of the Aristotelian Society 87, 137–151, 1986) and Zalta (Abstract Objects, vol. 160 of Synthese Library, 1983), examines explicit definitions of abstract objects. These axioms state that there is a unique (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Impredicativity and Paradox.Gabriel Uzquiano - 2019 - Thought: A Journal of Philosophy 8 (3):209-221.
    Thought: A Journal of Philosophy, EarlyView.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Russell’s Paradox and Free Zig Zag Solutions.Ludovica Conti - 2020 - Foundations of Science 28 (1):185-203.
    I present the traditional debate about the so called explanation of Russell’s paradox and propose a new way to solve the contradiction that arises in Frege’s system. I briefly examine two alternative explanatory proposals—the Predicativist explanation and the Cantorian one—presupposed by almost all the proposed solutions of Russell’s Paradox. From the discussion about these proposals a controversial conclusion emerges. Then, I examine some particular zig zag solutions and I propose a third explanation, presupposed by them, in which I emphasise the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Taking Stock: Hale, Heck, and Wright on Neo-Logicism and Higher-Order Logic.Crispin Wright - 2021 - Philosophia Mathematica 29 (3): 392--416.
    ABSTRACT Four philosophical concerns about higher-order logic in general and the specific demands placed on it by the neo-logicist project are distinguished. The paper critically reviews recent responses to these concerns by, respectively, the late Bob Hale, Richard Kimberly Heck, and myself. It is argued that these score some successes. The main aim of the paper, however, is to argue that the most serious objection to the applications of higher-order logic required by the neo-logicist project has not been properly understood. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modality and Paradox.Gabriel Uzquiano - 2015 - Philosophy Compass 10 (4):284-300.
    Philosophers often explain what could be the case in terms of what is, in fact, the case at one possible world or another. They may differ in what they take possible worlds to be or in their gloss of what is for something to be the case at a possible world. Still, they stand united by the threat of paradox. A family of paradoxes akin to the set-theoretic antinomies seem to allow one to derive a contradiction from apparently plausible principles. (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Frege’s permutation argument revisited.Kai Frederick Wehmeier & Peter Schroeder-Heister - 2005 - Synthese 147 (1):43-61.
    In Section 10 of Grundgesetze, Volume I, Frege advances a mathematical argument (known as the permutation argument), by means of which he intends to show that an arbitrary value-range may be identified with the True, and any other one with the False, without contradicting any stipulations previously introduced (we shall call this claim the identifiability thesis, following Schroeder-Heister (1987)). As far as we are aware, there is no consensus in the literature as to (i) the proper interpretation of the permutation (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Introduction.Øystein Linnebo - 2009 - Synthese 170 (3):321-329.
    Neo-Fregean logicism seeks to base mathematics on abstraction principles. But the acceptable abstraction principles are surrounded by unacceptable ones. This is the "bad company problem." In this introduction I first provide a brief historical overview of the problem. Then I outline the main responses that are currently being debated. In the course of doing so I provide summaries of the contributions to this special issue.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the consistency of the Δ11-CA fragment of Frege's grundgesetze.Fernando Ferreira & Kai F. Wehmeier - 2002 - Journal of Philosophical Logic 31 (4):301-311.
    It is well known that Frege's system in the Grundgesetze der Arithmetik is formally inconsistent. Frege's instantiation rule for the second-order universal quantifier makes his system, except for minor differences, full (i.e., with unrestricted comprehension) second-order logic, augmented by an abstraction operator that abides to Frege's basic law V. A few years ago, Richard Heck proved the consistency of the fragment of Frege's theory obtained by restricting the comprehension schema to predicative formulae. He further conjectured that the more encompassing Δ₁¹-comprehension (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Plural Frege Arithmetic.Francesca Boccuni - 2022 - Philosophia Scientiae 26:189-206.
    In [Boccuni 2010], a predicative fragment of Frege’s blv augmented with Boolos’ unrestricted plural quantification is shown to interpret pa2. The main disadvantage of that axiomatisation is that it does not recover Frege Arithmetic fa because of the restrictions imposed on the axioms. The aim of the present article is to show how [Boccuni 2010] can be consistently extended so as to interpret fa and consequently pa2 in a way that parallels Frege’s. In that way, the presented system will be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Consistency of a Plural Theory of Frege’s Grundgesetze.Francesca Boccuni - 2011 - Studia Logica 97 (3):329-345.
    PG (Plural Grundgesetze) is a predicative monadic second-order system which is aimed to derive second-order Peano arithmetic. It exploits the notion of plural quantification and a few Fregean devices, among which the infamous Basic Law V. In this paper, a model-theoretical consistency proof for the system PG is provided.
    Download  
     
    Export citation  
     
    Bookmark   8 citations