Switch to: References

Add citations

You must login to add citations.
  1. Degree spectra and immunity properties.Barbara F. Csima & Iskander S. Kalimullin - 2010 - Mathematical Logic Quarterly 56 (1):67-77.
    We analyze the degree spectra of structures in which different types of immunity conditions are encoded. In particular, we give an example of a structure whose degree spectrum coincides with the hyperimmune degrees. As a corollary, this shows the existence of an almost computable structure of which the complement of the degree spectrum is uncountable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Co-immune subspaces and complementation in V∞.R. Downey - 1984 - Journal of Symbolic Logic 49 (2):528 - 538.
    We examine the multiplicity of complementation amongst subspaces of V ∞ . A subspace V is a complement of a subspace W if V ∩ W = {0} and (V ∪ W) * = V ∞ . A subspace is called fully co-r.e. if it is generated by a co-r.e. subset of a recursive basis of V ∞ . We observe that every r.e. subspace has a fully co-r.e. complement. Theorem. If S is any fully co-r.e. subspace then S has (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Asymptotic density and computably enumerable sets.Rodney G. Downey, Carl G. Jockusch & Paul E. Schupp - 2013 - Journal of Mathematical Logic 13 (2):1350005.
    We study connections between classical asymptotic density, computability and computable enumerability. In an earlier paper, the second two authors proved that there is a computably enumerable set A of density 1 with no computable subset of density 1. In the current paper, we extend this result in three different ways: The degrees of such sets A are precisely the nonlow c.e. degrees. There is a c.e. set A of density 1 with no computable subset of nonzero density. There is a (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Classification from a computable viewpoint.Wesley Calvert & Julia F. Knight - 2006 - Bulletin of Symbolic Logic 12 (2):191-218.
    Classification is an important goal in many branches of mathematics. The idea is to describe the members of some class of mathematical objects, up to isomorphism or other important equivalence, in terms of relatively simple invariants. Where this is impossible, it is useful to have concrete results saying so. In model theory and descriptive set theory, there is a large body of work showing that certain classes of mathematical structures admit classification while others do not. In the present paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • From Bi-Immunity to Absolute Undecidability.Laurent Bienvenu, Adam R. Day & Rupert Hölzl - 2009 - Journal of Symbolic Logic 78 (4):1218-1228.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The degrees of bi-hyperhyperimmune sets.Uri Andrews, Peter Gerdes & Joseph S. Miller - 2014 - Annals of Pure and Applied Logic 165 (3):803-811.
    We study the degrees of bi-hyperhyperimmune sets. Our main result characterizes these degrees as those that compute a function that is not dominated by any ∆02 function, and equivalently, those that compute a weak 2-generic. These characterizations imply that the collection of bi-hhi Turing degrees is closed upwards.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ramsey's theorem and recursion theory.Carl G. Jockusch - 1972 - Journal of Symbolic Logic 37 (2):268-280.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Notions of weak genericity.Stuart A. Kurtz - 1983 - Journal of Symbolic Logic 48 (3):764-770.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Π10 classes and Boolean combinations of recursively enumerable sets.Carl G. Jockusch - 1974 - Journal of Symbolic Logic 39 (1):95-96.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Diagonally non-computable functions and bi-immunity.Carl G. Jockusch & Andrew E. M. Lewis - 2013 - Journal of Symbolic Logic 78 (3):977-988.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Calibrating randomness.Rod Downey, Denis R. Hirschfeldt, André Nies & Sebastiaan A. Terwijn - 2006 - Bulletin of Symbolic Logic 12 (3):411-491.
    We report on some recent work centered on attempts to understand when one set is more random than another. We look at various methods of calibration by initial segment complexity, such as those introduced by Solovay [125], Downey, Hirschfeldt, and Nies [39], Downey, Hirschfeldt, and LaForte [36], and Downey [31]; as well as other methods such as lowness notions of Kučera and Terwijn [71], Terwijn and Zambella [133], Nies [101, 100], and Downey, Griffiths, and Reid [34]; higher level randomness notions (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Generics for computable Mathias forcing.Peter A. Cholak, Damir D. Dzhafarov, Jeffry L. Hirst & Theodore A. Slaman - 2014 - Annals of Pure and Applied Logic 165 (9):1418-1428.
    We study the complexity of generic reals for computable Mathias forcing in the context of computability theory. The n -generics and weak n -generics form a strict hierarchy under Turing reducibility, as in the case of Cohen forcing. We analyze the complexity of the Mathias forcing relation, and show that if G is any n -generic with n≥2n≥2 then it satisfies the jump property G≡TG′⊕∅G≡TG′⊕∅. We prove that every such G has generalized high Turing degree, and so cannot have even (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations