Switch to: References

Add citations

You must login to add citations.
  1. Strong Measure Zero Sets on for Inaccessible.Nick Steven Chapman & Johannes Philipp Schürz - forthcoming - Journal of Symbolic Logic:1-31.
    We investigate the notion of strong measure zero sets in the context of the higher Cantor space $2^\kappa $ for $\kappa $ at least inaccessible. Using an iteration of perfect tree forcings, we give two proofs of the relative consistency of $$\begin{align*}|2^\kappa| = \kappa^{++} + \forall X \subseteq 2^\kappa:\ X \textrm{ is strong measure zero if and only if } |X| \leq \kappa^+. \end{align*}$$ Furthermore, we also investigate the stronger notion of stationary strong measure zero and show that the equivalence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$ θ -supercompact.Brent Cody, Moti Gitik, Joel David Hamkins & Jason A. Schanker - 2015 - Archive for Mathematical Logic 54 (5-6):491-510.
    We prove from suitable large cardinal hypotheses that the least weakly compact cardinal can be unfoldable, weakly measurable and even nearly θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}-supercompact, for any desired θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta}$$\end{document}. In addition, we prove several global results showing how the entire class of weakly compactcardinals, a proper class, can be made to coincide with the class of unfoldable cardinals, with the class of weakly measurable cardinals or (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indestructibility of Vopěnka’s Principle.Andrew D. Brooke-Taylor - 2011 - Archive for Mathematical Logic 50 (5-6):515-529.
    Vopěnka’s Principle is a natural large cardinal axiom that has recently found applications in category theory and algebraic topology. We show that Vopěnka’s Principle and Vopěnka cardinals are relatively consistent with a broad range of other principles known to be independent of standard (ZFC) set theory, such as the Generalised Continuum Hypothesis, and the existence of a definable well-order on the universe of all sets. We achieve this by showing that they are indestructible under a broad class of forcing constructions, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Indestructible Strong Unfoldability.Joel David Hamkins & Thomas A. Johnstone - 2010 - Notre Dame Journal of Formal Logic 51 (3):291-321.
    Using the lottery preparation, we prove that any strongly unfoldable cardinal $\kappa$ can be made indestructible by all.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Generic embeddings associated to an indestructibly weakly compact cardinal.Gunter Fuchs - 2010 - Annals of Pure and Applied Logic 162 (1):89-105.
    I use generic embeddings induced by generic normal measures on that can be forced to exist if κ is an indestructibly weakly compact cardinal. These embeddings can be applied in order to obtain the forcing axioms in forcing extensions. This has consequences in : The Singular Cardinal Hypothesis holds above κ, and κ has a useful Jónsson-like property. This in turn implies that the countable tower works much like it does when κ is a Woodin limit of Woodin cardinals. One (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hierarchies of forcing axioms, the continuum hypothesis and square principles.Gunter Fuchs - 2018 - Journal of Symbolic Logic 83 (1):256-282.
    I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s ordinal reflection principle atω2, and that its effect on the failure of weak squares is very similar to that of Martin’s Maximum.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Partial near supercompactness.Jason Aaron Schanker - 2013 - Annals of Pure and Applied Logic 164 (2):67-85.
    A cardinal κ is nearly θ-supercompact if for every A⊆θ, there exists a transitive M⊨ZFC− closed under θ and j″θ∈N.2 This concept strictly refines the θ-supercompactness hierarchy as every θ-supercompact cardinal is nearly θ-supercompact, and every nearly 2θ<κ-supercompact cardinal κ is θ-supercompact. Moreover, if κ is a θ-supercompact cardinal for some θ such that θ<κ=θ, we can move to a forcing extension preserving all cardinals below θ++ where κ remains θ-supercompact but is not nearly θ+-supercompact. We will also show that (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Laver-like indestructibility for hypermeasurable cardinals.Radek Honzik - 2019 - Archive for Mathematical Logic 58 (3-4):275-287.
    We show that if \ is \\)-hypermeasurable for some cardinal \ with \ \le \mu \) and GCH holds, then we can extend the universe by a cofinality-preserving forcing to obtain a model \ in which the \\)-hypermeasurability of \ is indestructible by the Cohen forcing at \ of any length up to \ is \\)-hypermeasurable in \). The preservation of hypermeasurability is useful for subsequent arguments. The construction of \ is based on the ideas of Woodin and Cummings :1–39, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strongly uplifting cardinals and the boldface resurrection axioms.Joel David Hamkins & Thomas A. Johnstone - 2017 - Archive for Mathematical Logic 56 (7-8):1115-1133.
    We introduce the strongly uplifting cardinals, which are equivalently characterized, we prove, as the superstrongly unfoldable cardinals and also as the almost-hugely unfoldable cardinals, and we show that their existence is equiconsistent over ZFC with natural instances of the boldface resurrection axiom, such as the boldface resurrection axiom for proper forcing.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strongly unfoldable, splitting and bounding.Ömer Faruk Bağ & Vera Fischer - 2023 - Mathematical Logic Quarterly 69 (1):7-14.
    Assuming, we show that generalized eventually narrow sequences on a strongly inaccessible cardinal κ are preserved under a one step iteration of the Hechler forcing for adding a dominating κ‐real. Moreover, we show that if κ is strongly unfoldable, and λ is a regular cardinal such that, then there is a set generic extension in which.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indestructibility, HOD, and the Ground Axiom.Arthur W. Apter - 2011 - Mathematical Logic Quarterly 57 (3):261-265.
    Let φ1 stand for the statement V = HOD and φ2 stand for the Ground Axiom. Suppose Ti for i = 1, …, 4 are the theories “ZFC + φ1 + φ2,” “ZFC + ¬φ1 + φ2,” “ZFC + φ1 + ¬φ2,” and “ZFC + ¬φ1 + ¬φ2” respectively. We show that if κ is indestructibly supercompact and λ > κ is inaccessible, then for i = 1, …, 4, Ai = df{δ κ is inaccessible. We show it is also (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The cofinality of the strong measure zero ideal for κ inaccessible.Johannes Philipp Schürz - 2023 - Mathematical Logic Quarterly 69 (1):31-39.
    We investigate the cofinality of the strong measure zero ideal for κ inaccessible and show that it is independent of the size of 2κ.
    Download  
     
    Export citation  
     
    Bookmark