Switch to: References

Add citations

You must login to add citations.
  1. Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
    We give a characterization of extendibility in terms of embeddings between the structures H λ . By that means, we show that the GCH can be forced (by a class forcing) while preserving extendible cardinals. As a corollary, we argue that such cardinals cannot in general be made indestructible by (set) forcing, under a wide variety of forcing notions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • More on the Preservation of Large Cardinals Under Class Forcing.Joan Bagaria & Alejandro Poveda - 2023 - Journal of Symbolic Logic 88 (1):290-323.
    We prove two general results about the preservation of extendible and $C^{(n)}$ -extendible cardinals under a wide class of forcing iterations (Theorems 5.4 and 7.5). As applications we give new proofs of the preservation of Vopěnka’s Principle and $C^{(n)}$ -extendible cardinals under Jensen’s iteration for forcing the GCH [17], previously obtained in [8, 27], respectively. We prove that $C^{(n)}$ -extendible cardinals are preserved by forcing with standard Easton-support iterations for any possible $\Delta _2$ -definable behaviour of the power-set function on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Woodin for strong compactness cardinals.Stamatis Dimopoulos - 2019 - Journal of Symbolic Logic 84 (1):301-319.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ultrahuge cardinals.Konstantinos Tsaprounis - 2016 - Mathematical Logic Quarterly 62 (1-2):77-87.
    In this note, we start with the notion of a superhuge cardinal and strengthen it by requiring that the elementary embeddings witnessing this property are, in addition, sufficiently superstrong above their target. This modification leads to a new large cardinal which we call ultrahuge. Subsequently, we study the placement of ultrahugeness in the usual large cardinal hierarchy, while at the same time show that some standard techniques apply nicely in the context of ultrahuge cardinals as well.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On c-extendible cardinals.Konstantinos Tsaprounis - 2018 - Journal of Symbolic Logic 83 (3):1112-1131.
    Download  
     
    Export citation  
     
    Bookmark   3 citations