Switch to: References

Add citations

You must login to add citations.
  1. On the Universality of Atomic and Molecular Logics via Protologics.Guillaume Aucher - 2022 - Logica Universalis 16 (1):285-322.
    After observing that the truth conditions of connectives of non–classical logics are generally defined in terms of formulas of first–order logic, we introduce ‘protologics’, a class of logics whose connectives are defined by arbitrary first–order formulas. Then, we introduce atomic and molecular logics, which are two subclasses of protologics that generalize our gaggle logics and which behave particularly well from a theoretical point of view. We also study and introduce a notion of equi-expressivity between two logics based on different classes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inner models from extended logics: Part 1.Juliette Kennedy, Menachem Magidor & Jouko Väänänen - 2020 - Journal of Mathematical Logic 21 (2):2150012.
    If we replace first-order logic by second-order logic in the original definition of Gödel’s inner model L, we obtain the inner model of hereditarily ordinal definable sets [33]. In this paper...
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Belief revision, minimal change and relaxation: A general framework based on satisfaction systems, and applications to description logics.Marc Aiguier, Jamal Atif, Isabelle Bloch & Céline Hudelot - 2018 - Artificial Intelligence 256 (C):160-180.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Infinitary propositional relevant languages with absurdity.Guillermo Badia - 2017 - Review of Symbolic Logic 10 (4):663-681.
    Analogues of Scott's isomorphism theorem, Karp's theorem as well as results on lack of compactness and strong completeness are established for infinitary propositional relevant logics. An "interpolation theorem" for the infinitary quantificational boolean logic L-infinity omega. holds. This yields a preservation result characterizing the expressive power of infinitary relevant languages with absurdity using the model-theoretic relation of relevant directed bisimulation as well as a Beth definability property.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On Formalism Freeness: Implementing Gödel's 1946 Princeton Bicentennial Lecture.Juliette Kennedy - 2013 - Bulletin of Symbolic Logic 19 (3):351-393.
    In this paper we isolate a notion that we call “formalism freeness” from Gödel's 1946 Princeton Bicentennial Lecture, which asks for a transfer of the Turing analysis of computability to the cases of definability and provability. We suggest an implementation of Gödel's idea in the case of definability, via versions of the constructible hierarchy based on fragments of second order logic. We also trace the notion of formalism freeness in the very wide context of developments in mathematical logic in the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • δ-Logics and generalized quantifiers.J. A. Makowsky - 1976 - Annals of Mathematical Logic 10 (2):155-192.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Applications of Many‐Sorted Robinson Consistency Theorem.Daniele Mundici - 1981 - Mathematical Logic Quarterly 27 (11-12):181-188.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Răzvan Diaconescu, Institution-independent Model Theory.Andrzej Tarlecki - 2014 - Studia Logica 102 (1):225-229.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Definability hierarchies of general quantifiers.Lauri Hella - 1989 - Annals of Pure and Applied Logic 43 (3):235.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The old and the new logic of metascience.Veikko Rantala - 1978 - Synthese 39 (2):233 - 247.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Logic Families.Hajnal Andréka, Zalán Gyenis, István Németi & Ildikó Sain - forthcoming - Studia Logica:1-47.
    A logic family is a bunch of logics that belong together in some way. First-order logic is one of the examples. Logics organized into a structure occur in abstract model theory, institution theory and in algebraic logic. Logic families play a role in adopting methods for investigating sentential logics to first-order like logics. We thoroughly discuss the notion of logic families as defined in the recent Universal Algebraic Logic book.
    Download  
     
    Export citation  
     
    Bookmark  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reduction Techniques for Proving Decidability in Logics and Their Meet–Combination.João Rasga, Cristina Sernadas & Walter Carnielli - 2021 - Bulletin of Symbolic Logic 27 (1):39-66.
    Satisfaction systems and reductions between them are presented as an appropriate context for analyzing the satisfiability and the validity problems. The notion of reduction is generalized in order to cope with the meet-combination of logics. Reductions between satisfaction systems induce reductions between the respective satisfiability problems and (under mild conditions) also between their validity problems. Sufficient conditions are provided for relating satisfiability problems to validity problems. Reflection results for decidability in the presence of reductions are established. The validity problem in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relativism, translation, and the metaphysics of realism.Aristidis Arageorgis - 2017 - Philosophical Studies 174 (3):659-680.
    Thoroughgoing relativists typically dismiss the realist conviction that competing theories describe just one definite and mind-independent world-structure on the grounds that such theories fail to be relatively translatable even though they are equally correct. This line of argument allegedly brings relativism into direct conflict with the metaphysics of realism. I argue that this relativist line of reasoning is shaky by deriving a theorem about relativistic inquiry in formal epistemology—more specifically, in the approach Kevin Kelly has dubbed “logic of reliable inquiry”. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Positive results in abstract model theory: a theory of compact logics.J. A. Makowsky & S. Shelah - 1983 - Annals of Pure and Applied Logic 25 (3):263-299.
    We prove that compactness is equivalent to the amalgamation property, provided the occurrence number of the logic is smaller than the first uncountable measurable cardinal. We also relate compactness to the existence of certain regular ultrafilters related to the logic and develop a general theory of compactness and its consequences. We also prove some combinatorial results of independent interest.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Inverse topological systems and compactness in abstract model theory.Daniele Mundici - 1986 - Journal of Symbolic Logic 51 (3):785-794.
    Given an abstract logic L = L(Q i ) i ∈ I generated by a set of quantifiers Q i , one can construct for each type τ a topological space S τ exactly as one constructs the Stone space for τ in first-order logic. Letting T be an arbitrary directed set of types, the set $S_T = \{(S_\tau, \pi^\tau_\sigma)\mid\sigma, \tau \in T, \sigma \subset \tau\}$ is an inverse topological system whose bonding mappings π τ σ are naturally determined by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A note on syntactical and semantical functions.Adam Gajda, Micha? Krynicki & Les?aw Szczerba - 1987 - Studia Logica 46 (2):177 - 185.
    We say that a semantical function is correlated with a syntactical function F iff for any structure A and any sentence we have A F A .It is proved that for a syntactical function F there is a semantical function correlated with F iff F preserves propositional connectives up to logical equivalence. For a semantical function there is a syntactical function F correlated with iff for any finitely axiomatizable class X the class –1X is also finitely axiomatizable (i.e. iff is (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Conservative Translations Revisited.J. Ramos, J. Rasga & C. Sernadas - 2023 - Journal of Philosophical Logic 52 (3):889-913.
    We provide sufficient conditions for the existence of a conservative translation from a consequence system to another one. We analyze the problem in many settings, namely when the consequence systems are generated by a deductive calculus or by a logic system including both proof-theoretic and model-theoretic components. We also discuss reflection of several metaproperties with the objective of showing that conservative translations provide an alternative to proving such properties from scratch. We discuss soundness and completeness, disjunction property and metatheorem of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Logical dual concepts based on mathematical morphology in stratified institutions: applications to spatial reasoning.Marc Aiguier & Isabelle Bloch - 2019 - Journal of Applied Non-Classical Logics 29 (4):392-429.
    Several logical operators are defined as dual pairs, in different types of logics. Such dual pairs of operators also occur in other algebraic theories, such as mathematical morphology. Based on this observation, this paper proposes to define, at the abstract level of institutions, a pair of abstract dual and logical operators as morphological erosion and dilation. Standard quantifiers and modalities are then derived from these two abstract logical operators. These operators are studied both on sets of states and sets of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An algebraic result about soft model theoretical equivalence relations with an application to H. Friedman's fourth problem.Daniele Mundici - 1981 - Journal of Symbolic Logic 46 (3):523-530.
    We prove the following algebraic characterization of elementary equivalence: $\equiv$ restricted to countable structures of finite type is minimal among the equivalence relations, other than isomorphism, which are preserved under reduct and renaming and which have the Robinson property; the latter is a faithful adaptation for equivalence relations of the familiar model theoretical notion. We apply this result to Friedman's fourth problem by proving that if L = L ωω (Q i ) i ∈ ω 1 is an (ω 1 (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the semantics of the Henkin quantifier.Michał Krynicki & Alistair H. Lachlan - 1979 - Journal of Symbolic Logic 44 (2):184-200.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A Logical Consequence Informed by Probability.Neil F. Hallonquist - 2024 - Logica Universalis 18 (3):395-429.
    There are two general conceptions on the relationship between probability and logic. In the first, these systems are viewed as complementary—having offsetting strengths and weaknesses—and there exists a fusion of the two that creates a reasoning system that improves upon each. In the second, probability is viewed as an instance of logic, given some sufficiently broad formulation of it, and it is this that should inform the development of more general reasoning systems. These two conceptions are in conflict with each (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Arbitrary Equivalence Relation as Elementary Equivalence in an Abstract Logic.Mark E. Nadel - 1980 - Mathematical Logic Quarterly 26 (7-9):103-109.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantified modal logic: Non-normal worlds and propositional attitudes.Veikko Rantala - 1982 - Studia Logica 41 (1):41 - 65.
    One way to obtain a comprehensive semantics for various systems of modal logic is to use a general notion of non-normal world. In the present article, a general notion of modal system is considered together with a semantic framework provided by such a general notion of non-normal world. Methodologically, the main purpose of this paper is to provide a logical framework for the study of various modalities, notably prepositional attitudes. Some specific systems are studied together with semantics using non-normal worlds (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • A Lindström Theorem for Intuitionistic Propositional Logic.Guillermo Badia - 2020 - Notre Dame Journal of Formal Logic 61 (1):11-30.
    We show that propositional intuitionistic logic is the maximal abstract logic satisfying a certain form of compactness, the Tarski union property, and preservation under asimulations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Global inductive definability.Jon Barwise & Yiannis N. Moschovakis - 1978 - Journal of Symbolic Logic 43 (3):521-534.
    We show that several theorems on ordinal bounds in different parts of logic are simple consequences of a basic result in the theory of global inductive definitions.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Probabilization of Logics: Completeness and Decidability. [REVIEW]Pedro Baltazar - 2013 - Logica Universalis 7 (4):403-440.
    The probabilization of a logic system consists of enriching the language (the formulas) and the semantics (the models) with probabilistic features. Such an operation is said to be exogenous if the enrichment is done on top, without internal changes to the structure, and is called endogenous otherwise. These two different enrichments can be applied simultaneously to the language and semantics of a same logic. We address the problem of studying the transference of metaproperties, such as completeness and decidability, to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maximality of Logic Without Identity.Guillermo Badia, Xavier Caicedo & Carles Noguera - 2024 - Journal of Symbolic Logic 89 (1):147-162.
    Lindström’s theorem obviously fails as a characterization of first-order logic without identity ( $\mathcal {L}_{\omega \omega }^{-} $ ). In this note, we provide a fix: we show that $\mathcal {L}_{\omega \omega }^{-} $ is a maximal abstract logic satisfying a weak form of the isomorphism property (suitable for identity-free languages and studied in [11]), the Löwenheim–Skolem property, and compactness. Furthermore, we show that compactness can be replaced by being recursively enumerable for validity under certain conditions. In the proofs, we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lindström theorems in graded model theory.Guillermo Badia & Carles Noguera - 2021 - Annals of Pure and Applied Logic 172 (3):102916.
    Stemming from the works of Petr Hájek on mathematical fuzzy logic, graded model theory has been developed by several authors in the last two decades as an extension of classical model theory that studies the semantics of many-valued predicate logics. In this paper we take the first steps towards an abstract formulation of this model theory. We give a general notion of abstract logic based on many-valued models and prove six Lindström-style characterizations of maximality of first-order logics in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The logical structure of modular semantic theories of software systems.Nicola Angius & Petros Stefaneas - 2024 - Metaphilosophy 55 (3):440-456.
    This paper studies the structure of semantic theories over modular computational systems and applies the algebraic Theory of Institutions to provide a logical representation of such theories. A modular semantic theory is here defined by a cluster of semantic theories, each for a single program's module, and by a set of relations connecting models of different semantic theories. A semantic theory of a single module is provided in terms of the set of ∑‐models mapped from the category Th of ∑‐theories (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Barwise: Abstract Model Theory and Generalized Quantifiers.Jouko Va An Anen - 2004 - Bulletin of Symbolic Logic 10 (1):37-53.
    §1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness.Any set (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • An Institution-independent Proof of the Beth Definability Theorem.M. Aiguier & F. Barbier - 2007 - Studia Logica 85 (3):333-359.
    A few results generalizing well-known classical model theory ones have been obtained in institution theory these last two decades (e.g. Craig interpolation, ultraproduct, elementary diagrams). In this paper, we propose a generalized institution-independent version of the Beth definability theorem.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstract Categorical Logic.Marc Aiguier & Isabelle Bloch - 2023 - Logica Universalis 17 (1):23-67.
    We present in this paper an abstract categorical logic based on an abstraction of quantifier. More precisely, the proposed logic is abstract because no structural constraints are imposed on models (semantics free). By contrast, formulas are inductively defined from an abstraction both of atomic formulas and of quantifiers. In this sense, the proposed approach differs from other works interested in formalizing the notion of abstract logic and of which the closest to our approach are the institutions, which in addition to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Barwise: Abstract model theory and generalized quantifiers.Jouko Väänänen - 2004 - Bulletin of Symbolic Logic 10 (1):37-53.
    §1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness.Any set (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • New foundations for metascience.David Pearce & Veikko Rantala - 1983 - Synthese 56 (1):1 - 26.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A Lindström theorem for intuitionistic first-order logic.Grigory Olkhovikov, Guillermo Badia & Reihane Zoghifard - 2023 - Annals of Pure and Applied Logic 174 (10):103346.
    Download  
     
    Export citation  
     
    Bookmark  
  • Compactness, interpolation and Friedman's third problem.Daniele Mundici - 1982 - Annals of Mathematical Logic 22 (2):197.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Duality for Compact Logics and Substitution in Abstract Model Theory.Paolo Lipparini - 1985 - Mathematical Logic Quarterly 31 (31-34):517-532.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Countable approximations and Löwenheim-Skolem theorems.David W. Kueker - 1977 - Annals of Mathematical Logic 11 (1):57.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Logicality and model classes.Juliette Kennedy & Jouko Väänänen - 2021 - Bulletin of Symbolic Logic 27 (4):385-414.
    We ask, when is a property of a model a logical property? According to the so-called Tarski–Sher criterion this is the case when the property is preserved by isomorphisms. We relate this to model-theoretic characteristics of abstract logics in which the model class is definable. This results in a graded concept of logicality in the terminology of Sagi [46]. We investigate which characteristics of logics, such as variants of the Löwenheim–Skolem theorem, Completeness theorem, and absoluteness, are relevant from the logicality (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Probability logic.Douglas N. Hoover - 1978 - Annals of Mathematical Logic 14 (3):287.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The härtig quantifier: A survey.Heinrich Herre, Michał Krynicki, Alexandr Pinus & Jouko Väänänen - 1991 - Journal of Symbolic Logic 56 (4):1153-1183.
    A fundamental notion in a large part of mathematics is the notion of equicardinality. The language with Hartig quantifier is, roughly speaking, a first-order language in which the notion of equicardinality is expressible. Thus this language, denoted by LI, is in some sense very natural and has in consequence special interest. Properties of LI are studied in many papers. In [BF, Chapter VI] there is a short survey of some known results about LI. We feel that a more extensive exposition (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations