Switch to: References

Add citations

You must login to add citations.
  1. Binding Specificity and Causal Selection in Drug Design.Oliver M. Lean - 2020 - Philosophy of Science 87 (1):70-90.
    Binding specificity is a centrally important concept in molecular biology, yet it has received little philosophical attention. Here I aim to remedy this by analyzing binding specificity as a causal property. I focus on the concept’s role in drug design, where it is highly prized and hence directly studied. From a causal perspective, understanding why binding specificity is a valuable property of drugs contributes to an understanding of causal selection—of how and why scientists distinguish between causes, not just causes from (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Causal Bayes Net Analysis of Glennan’s Mechanistic Account of Higher-Level Causation.Alexander Gebharter - 2022 - British Journal for the Philosophy of Science 73 (1):185-210.
    One of Stuart Glennan's most prominent contributions to the new mechanist debate consists in his reductive analysis of higher-level causation in terms of mechanisms (Glennan, 1996). In this paper I employ the causal Bayes net framework to reconstruct his analysis. This allows for specifying general assumptions which have to be satis ed to get Glennan's approach working. I show that once these assumptions are in place, they imply (against the background of the causal Bayes net machinery) that higher-level causation indeed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)On the Incompatibility of Dynamical Biological Mechanisms and Causal Graphs.Marcel Weber - 2016 - Philosophy of Science 83 (5):959-971.
    I examine to what extent accounts of mechanisms based on formal interventionist theories of causality can adequately represent biological mechanisms with complex dynamics. Using a differential equation model for a circadian clock mechanism as an example, I first show that there exists an iterative solution that can be interpreted as a structural causal model. Thus, in principle, it is possible to integrate causal difference-making information with dynamical information. However, the differential equation model itself lacks the right modularity properties for a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Establishing Causal Claims in Medicine.Jon Williamson - 2019 - International Studies in the Philosophy of Science 32 (1):33-61.
    Russo and Williamson put forward the following thesis: in order to establish a causal claim in medicine, one normally needs to establish both that the putative cause and putative effect are appropriately correlated and that there is some underlying mechanism that can account for this correlation. I argue that, although the Russo-Williamson thesis conflicts with the tenets of present-day evidence-based medicine, it offers a better causal epistemology than that provided by present-day EBM because it better explains two key aspects of (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Combining causal Bayes nets and cellular automata: A hybrid modelling approach to mechanisms.Alexander Gebharter & Daniel Koch - 2021 - British Journal for the Philosophy of Science 72 (3):839-864.
    Causal Bayes nets (CBNs) can be used to model causal relationships up to whole mechanisms. Though modelling mechanisms with CBNs comes with many advantages, CBNs might fail to adequately represent some biological mechanisms because—as Kaiser (2016) pointed out—they have problems with capturing relevant spatial and structural information. In this paper we propose a hybrid approach for modelling mechanisms that combines CBNs and cellular automata. Our approach can incorporate spatial and structural information while, at the same time, it comes with all (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A modeling approach for mechanisms featuring causal cycles.Alexander Gebharter & Gerhard Schurz - 2016 - Philosophy of Science 83 (5):934-945.
    Mechanisms play an important role in many sciences when it comes to questions concerning explanation, prediction, and control. Answering such questions in a quantitative way requires a formal represention of mechanisms. Gebharter (2014) suggests to represent mechanisms by means of one or more causal arrows of an acyclic causal net. In this paper we show how this approach can be extended in such a way that it can also be fruitfully applied to mechanisms featuring causal feedback.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Intervening into mechanisms: Prospects and challenges.Lena Kästner & Lise Marie Andersen - 2018 - Philosophy Compass 13 (11):e12546.
    In contemporary philosophy of science, the consensus view seems to be that scientific explanations describe mechanisms responsible for the phenomena to be explained. Two kinds of explanatory relevance figure in mechanistic accounts of explanation: causal and constitutive. Following prominent accounts, it seems natural to analyze both these relations in terms of systematic interventions into some factor X with respect to another factor Y. However, such interventions are tailored to uncover causal relations only. Construing the constitutive relationship between parts and wholes (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations