Switch to: References

Add citations

You must login to add citations.
  1. Précis of bayesian rationality: The probabilistic approach to human reasoning.Mike Oaksford & Nick Chater - 2009 - Behavioral and Brain Sciences 32 (1):69-84.
    According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer, deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules of logic – the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed logical reasoning as defining (...)
    Download  
     
    Export citation  
     
    Bookmark   152 citations  
  • Context, learning, and extinction.Samuel J. Gershman, David M. Blei & Yael Niv - 2010 - Psychological Review 117 (1):197-209.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Reconciling reinforcement learning models with behavioral extinction and renewal: Implications for addiction, relapse, and problem gambling.A. David Redish, Steve Jensen, Adam Johnson & Zeb Kurth-Nelson - 2007 - Psychological Review 114 (3):784-805.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Locally Bayesian learning with applications to retrospective revaluation and highlighting.John K. Kruschke - 2006 - Psychological Review 113 (4):677-699.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • The uncertain reasoner: Bayes, logic, and rationality.Mike Oaksford & Nick Chater - 2009 - Behavioral and Brain Sciences 32 (1):105-120.
    Human cognition requires coping with a complex and uncertain world. This suggests that dealing with uncertainty may be the central challenge for human reasoning. In Bayesian Rationality we argue that probability theory, the calculus of uncertainty, is the right framework in which to understand everyday reasoning. We also argue that probability theory explains behavior, even on experimental tasks that have been designed to probe people's logical reasoning abilities. Most commentators agree on the centrality of uncertainty; some suggest that there is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Explaining compound generalization in associative and causal learning through rational principles of dimensional generalization.Fabian A. Soto, Samuel J. Gershman & Yael Niv - 2014 - Psychological Review 121 (3):526-558.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Rational and mechanistic perspectives on reinforcement learning.Nick Chater - 2009 - Cognition 113 (3):350-364.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Novelty and Inductive Generalization in Human Reinforcement Learning.Samuel J. Gershman & Yael Niv - 2015 - Topics in Cognitive Science 7 (3):391-415.
    In reinforcement learning, a decision maker searching for the most rewarding option is often faced with the question: What is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: How can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and we describe an equivalence between the Bayesian model and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Keep focussing: striatal dopamine multiple functions resolved in a single mechanism tested in a simulated humanoid robot.Vincenzo G. Fiore, Valerio Sperati, Francesco Mannella, Marco Mirolli, Kevin Gurney, Karl Friston, Raymond J. Dolan & Gianluca Baldassarre - 2014 - Frontiers in Psychology 5.
    The effects of striatal dopamine (DA) on behavior have been widely investigated over the past decades, with “phasic” burst firings considered as the key expression of a reward prediction error responsible for reinforcement learning. Less well studied is “tonic” DA, where putative functions include the idea that it is a regulator of vigor, incentive salience, disposition to exert an effort and a modulator of approach strategies. We present a model combining tonic and phasic DA to show how different outflows triggered (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Popper's severity of test as an intuitive probabilistic model of hypothesis testing.Fenna H. Poletiek - 2009 - Behavioral and Brain Sciences 32 (1):99-100.
    Severity of Test (SoT) is an alternative to Popper's logical falsification that solves a number of problems of the logical view. It was presented by Popper himself in 1963. SoT is a less sophisticated probabilistic model of hypothesis testing than Oaksford & Chater's (O&C's) information gain model, but it has a number of striking similarities. Moreover, it captures the intuition of everyday hypothesis testing.
    Download  
     
    Export citation  
     
    Bookmark