Switch to: References

Add citations

You must login to add citations.
  1. Effective inseparability in a topological setting.Dieter Spreen - 1996 - Annals of Pure and Applied Logic 80 (3):257-275.
    Effective inseparability of pairs of sets is an important notion in logic and computer science. We study the effective inseparability of sets which appear as index sets of subsets of an effectively given topological T0-space and discuss its consequences. It is shown that for two disjoint subsets X and Y of the space one can effectively find a witness that the index set of X cannot be separated from the index set of Y by a recursively enumerable set, if X (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Point-free topological spaces, functions and recursive points; filter foundation for recursive analysis. I.Iraj Kalantari & Lawrence Welch - 1998 - Annals of Pure and Applied Logic 93 (1-3):125-151.
    In this paper we develop a point-free approach to the study of topological spaces and functions on them, establish platforms for both and present some findings on recursive points. In the first sections of the paper, we obtain conditions under which our approach leads to the generation of ideal objects with which mathematicians work. Next, we apply the effective version of our approach to the real numbers, and make exact connections to the classical approach to recursive reals. In the succeeding (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Effective topological spaces II: A hierarchy.Iraj Kalantari & Galen Weitkamp - 1985 - Annals of Pure and Applied Logic 29 (2):207-224.
    This paper is an investigation of definability hierarchies on effective topological spaces. An open subset U of an effective space X is definable iff there is a parameter free definition φ of U so that the atomic predicate symbols of φ are recursively open relations on X . The complexity of a definable open set may be identified with the quantifier complexity of its definition. For example, a set U is an ∃∃∀∃-set if it has an ∃∃∀∃ parameter free definition (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Effective topological spaces III: Forcing and definability.Iraj Kalantari & Galen Weitkamp - 1987 - Annals of Pure and Applied Logic 36:17-27.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computable Topological Groups.K. O. H. Heer Tern, Alexander G. Melnikov & N. G. Keng Meng - forthcoming - Journal of Symbolic Logic:1-33.
    We investigate what it means for a (Hausdorff, second-countable) topological group to be computable. We compare several potential definitions based on classical notions in the literature. We relate these notions with the well-established definitions of effective presentability for discrete and profinite groups, and compare our results with similar results in computable topology.
    Download  
     
    Export citation  
     
    Bookmark