Switch to: References

Add citations

You must login to add citations.
  1. Complete Intuitionistic Temporal Logics for Topological Dynamics.Joseph Boudou, Martín Diéguez & David Fernández-Duque - 2022 - Journal of Symbolic Logic 87 (3):995-1022.
    The language of linear temporal logic can be interpreted on the class of dynamic topological systems, giving rise to the intuitionistic temporal logic ${\sf ITL}^{\sf c}_{\Diamond \forall }$, recently shown to be decidable by Fernández-Duque. In this article we axiomatize this logic, some fragments, and prove completeness for several familiar spaces.
    Download  
     
    Export citation  
     
    Bookmark  
  • Temporal Gödel-Gentzen and Girard translations.Norihiro Kamide - 2013 - Mathematical Logic Quarterly 59 (1-2):66-83.
    A theorem for embedding a first-order linear- time temporal logic LTL into its intuitionistic counterpart ILTL is proved using Baratella-Masini's temporal extension of the Gödel-Gentzen negative translation of classical logic into intuitionistic logic. A substructural counterpart LLTL of ILTL is introduced, and a theorem for embedding ILTL into LLTL is proved using a temporal extension of the Girard translation of intuitionistic logic into intuitionistic linear logic. These embedding theorems are proved syntactically based on Gentzen-type sequent calculi.
    Download  
     
    Export citation  
     
    Bookmark  
  • A decidable paraconsistent relevant logic: Gentzen system and Routley-Meyer semantics.Norihiro Kamide - 2016 - Mathematical Logic Quarterly 62 (3):177-189.
    In this paper, the positive fragment of the logic math formula of contraction-less relevant implication is extended with the addition of a paraconsistent negation connective similar to the strong negation connective in Nelson's paraconsistent four-valued logic math formula. This extended relevant logic is called math formula, and it has the property of constructible falsity which is known to be a characteristic property of math formula. A Gentzen-type sequent calculus math formula for math formula is introduced, and the cut-elimination and decidability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Synchronized Linear-Time Temporal Logic.Heinrich Wansing & Norihiro Kamide - 2011 - Studia Logica 99 (1-3):365-388.
    A new combined temporal logic called synchronized linear-time temporal logic (SLTL) is introduced as a Gentzen-type sequent calculus. SLTL can represent the n -Cartesian product of the set of natural numbers. The cut-elimination and completeness theorems for SLTL are proved. Moreover, a display sequent calculus δ SLTL is defined.
    Download  
     
    Export citation  
     
    Bookmark  
  • Temporal logic.Temporal Logic - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark  
  • On a Generalization of Heyting Algebras I.Amirhossein Akbar Tabatabai, Majid Alizadeh & Masoud Memarzadeh - forthcoming - Studia Logica:1-45.
    \(\nabla \) -algebra is a natural generalization of Heyting algebra, unifying many algebraic structures including bounded lattices, Heyting algebras, temporal Heyting algebras and the algebraic presentation of the dynamic topological systems. In a series of two papers, we will systematically study the algebro-topological properties of different varieties of \(\nabla \) -algebras. In the present paper, we start with investigating the structure of these varieties by characterizing their subdirectly irreducible and simple elements. Then, we prove the closure of these varieties under (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bounded linear-time temporal logic: A proof-theoretic investigation.Norihiro Kamide - 2012 - Annals of Pure and Applied Logic 163 (4):439-466.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Temporal logic.Antony Galton - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Representing any-time and program-iteration by infinitary conjunction.Norihiro Kamide - 2013 - Journal of Applied Non-Classical Logics 23 (3):284 - 298.
    Two new infinitary modal logics are simply obtained from a Gentzen-type sequent calculus for infinitary logic by adding a next-time operator, and a program operator, respectively. It is shown that an any-time operator and a program-iteration operator can respectively be expressed using infinitary conjunction in these logics. The cut-elimination and completeness theorems for these logics are proved using some theorems for embedding these logics into (classical) infinitary logic.
    Download  
     
    Export citation  
     
    Bookmark