Switch to: References

Add citations

You must login to add citations.
  1. Dummett’s Theory of Truth as a Source of Connexivity.Alex Belikov & Evgeny Loginov - forthcoming - Studia Logica:1-34.
    In his seminal paper ‘Truth’, M. Dummett considered negated conditional statements as one of the main motivations for introducing a three-valued logical framework. He left a sketch of an implication connective that, as we observe, shares some intuitions with Wansing-style account for connexivity. In this article, we discuss Dummett’s ‘unfinished’ implication and suggest two possible reconstructions of it. One of them collapses into implication from W. Cooper’s ‘Logic of Ordinary Discourse’ \(\textbf{OL}\) and J. Cantwell’s ‘Logic of Conditional Negation’ \(\textbf{CN}\), whereas (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Refutation-Aware Gentzen-Style Calculi for Propositional Until-Free Linear-Time Temporal Logic.Norihiro Kamide - 2023 - Studia Logica 111 (6):979-1014.
    This study introduces refutation-aware Gentzen-style sequent calculi and Kripke-style semantics for propositional until-free linear-time temporal logic. The sequent calculi and semantics are constructed on the basis of the refutation-aware setting for Nelson’s paraconsistent logic. The cut-elimination and completeness theorems for the proposed sequent calculi and semantics are proven.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rules of Explosion and Excluded Middle: Constructing a Unified Single-Succedent Gentzen-Style Framework for Classical, Paradefinite, Paraconsistent, and Paracomplete Logics.Norihiro Kamide - 2024 - Journal of Logic, Language and Information 33 (2):143-178.
    A unified and modular falsification-aware single-succedent Gentzen-style framework is introduced for classical, paradefinite, paraconsistent, and paracomplete logics. This framework is composed of two special inference rules, referred to as the rules of explosion and excluded middle, which correspond to the principle of explosion and the law of excluded middle, respectively. Similar to the cut rule in Gentzen’s LK for classical logic, these rules are admissible in cut-free LK. A falsification-aware single-succedent Gentzen-style sequent calculus fsCL for classical logic is formalized based (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Combining linear-time temporal logic with constructiveness and paraconsistency.Norihiro Kamide & Heinrich Wansing - 2010 - Journal of Applied Logic 8 (1):33-61.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Type Theory with Opposite Types: A Paraconsistent Type Theory.Juan C. Agudelo-Agudelo & Andrés Sicard-Ramírez - 2022 - Logic Journal of the IGPL 30 (5):777-806.
    A version of intuitionistic type theory is extended with opposite types, allowing a different formalization of negation and obtaining a paraconsistent type theory (⁠|$\textsf{PTT} $|⁠). The rules for opposite types in |$\textsf{PTT} $| are based on the rules of the so-called constructible falsity. A propositions-as-types correspondence between the many-sorted paraconsistent logic |$\textsf{PL}_\textsf{S} $| (a many-sorted extension of López-Escobar’s refutability calculus presented in natural deduction format) and |$\textsf{PTT} $| is proven. Moreover, a translation of |$\textsf{PTT} $| into intuitionistic type theory is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong Normalizability of Typed Lambda-Calculi for Substructural Logics.Motohiko Mouri & Norihiro Kamide - 2008 - Logica Universalis 2 (2):189-207.
    The strong normalization theorem is uniformly proved for typed λ-calculi for a wide range of substructural logics with or without strong negation.
    Download  
     
    Export citation  
     
    Bookmark